IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i12p1599-d123582.html
   My bibliography  Save this article

Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China

Author

Listed:
  • Zhaofu Li

    (College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    These authors contributed equally to this work.)

  • Chuan Luo

    (College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
    These authors contributed equally to this work.)

  • Kaixia Jiang

    (College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China)

  • Rongrong Wan

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73, Beijing East Road, Nanjing 210008, China)

  • Hengpeng Li

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No. 73, Beijing East Road, Nanjing 210008, China)

Abstract

The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R 2 ) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R 2 was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.

Suggested Citation

  • Zhaofu Li & Chuan Luo & Kaixia Jiang & Rongrong Wan & Hengpeng Li, 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:12:p:1599-:d:123582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/12/1599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/12/1599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ribarova, Irina & Ninov, Plamen & Cooper, David, 2008. "Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria," Ecological Modelling, Elsevier, vol. 211(1), pages 241-246.
    2. Y. Yang & L. Wang, 2010. "A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1819-1843, July.
    3. Zhao, G.J. & Hörmann, G. & Fohrer, N. & Li, H.P. & Gao, J.F. & Tian, K., 2011. "Development and application of a nitrogen simulation model in a data scarce catchment in South China," Agricultural Water Management, Elsevier, vol. 98(4), pages 619-631, February.
    4. Ligang Xu & Qi Zhang & Hengpeng Li & Neil Viney & Jintao Xu & Jia Liu, 2007. "Modeling of Surface Runoff in Xitiaoxi Catchment, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1313-1323, August.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    6. Jairo Diaz-Ramirez & William McAnally & James Martin, 2012. "Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3515-3538, September.
    7. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    8. Nassim Al-Abed & Munjed Al-Sharif, 2008. "Hydrological Modeling of Zarqa River Basin – Jordan Using the Hydrological Simulation Program – FORTRAN (HSPF) Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1203-1220, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    5. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    6. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    7. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    8. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    9. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    10. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    11. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    12. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    15. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    16. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    17. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic,, 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    18. Juliana Marcal & Blanca Antizar-Ladislao & Jan Hofman, 2021. "Addressing Water Security: An Overview," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    20. Claudia Bita-Nicolae, 2022. "Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians," Sustainability, MDPI, vol. 14(24), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:12:p:1599-:d:123582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.