IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12695-d934526.html
   My bibliography  Save this article

Adoption and Growth of Fuel Cell Vehicles in China: The Case of BYD

Author

Listed:
  • Hassan Qudrat-Ullah

    (School of Administrative Studies, York University, Toronto, ON M9V 3K7, Canada)

Abstract

Compared to battery electric vehicles (BEVs), fuel cell vehicles (FCVs) have been developing since the early 2000s due to their efficiency and environmental advantages. However, unlike the battery industry which has already achieved economies of scale, the scale of fuel cell manufacturing is still in its early stage in China. In this exploratory study, using the case of BYD, we identify and analyze the key economic and environmental factors that might facilitate and propel the adoption of FCVs in China. Utilizing quantitative (i.e., the statistically descriptive method) and qualitative (i.e., a semi-structured interview and Porter’s model) reasoning, this study finds that by systematically addressing two factors, (i) customers’ misperceptions about the safety and environmental friendliness of FCVs and (ii) lack of technical competencies in the upstream and downstream of the FCV industry’s value chain in general and for BYD in particular, the sustainable development and adoption of FCVs in China can be achieved.

Suggested Citation

  • Hassan Qudrat-Ullah, 2022. "Adoption and Growth of Fuel Cell Vehicles in China: The Case of BYD," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12695-:d:934526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    3. Ahman, Max, 2006. "Government policy and the development of electric vehicles in Japan," Energy Policy, Elsevier, vol. 34(4), pages 433-443, March.
    4. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    5. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    6. Usman Asif & Klaus Schmidt, 2021. "Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success," Sustainability, MDPI, vol. 13(9), pages 1-12, May.
    7. Zhaojia Huang & Liang Zhang & Tianhao Zhi, 2022. "The Future of Traditional Fuel Vehicles (TFV) and New Energy Vehicles (NEV): Creative Destruction or Co-existence?," Papers 2207.03672, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakur Dhakal & Kyoung-Soon Min, 2021. "Macro Analysis and Forecast of Global Expansion of Electric Vehicles," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 15(1), pages 67-73.
    2. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
    3. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    4. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    5. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    6. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    7. repec:hrs:journl::y:2012:v:4:i:3:p:105-125 is not listed on IDEAS
    8. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    9. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    10. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    11. Kowalska-Pyzalska, Anna & Michalski, Rafał & Kott, Marek & Skowrońska-Szmer, Anna & Kott, Joanna, 2022. "Consumer preferences towards alternative fuel vehicles. Results from the conjoint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    13. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    14. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. He, Wentao & Hao, Xiaoli, 2023. "Competition and welfare effects of introducing new products into the new energy vehicle market: Empirical evidence from Tesla’s entry into the Chinese market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    16. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    17. Hossein Shayeghi & Ali Seifi & Majid Hosseinpour & Nicu Bizon, 2022. "Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    18. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    19. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    20. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    21. Xingping Zhang & Jian Xie & Rao Rao & Yanni Liang, 2014. "Policy Incentives for the Adoption of Electric Vehicles across Countries," Sustainability, MDPI, vol. 6(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12695-:d:934526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.