IDEAS home Printed from https://ideas.repec.org/e/pqu78.html
   My authors  Follow this author

Hassan Qudrat-Ullah

Personal Details

First Name:Hassan
Middle Name:
Last Name:Qudrat-Ullah
Suffix:
RePEc Short-ID:pqu78
[This author has chosen not to make the email address public]

Affiliation

York University

http://www.yorku.ca
Canada, Toronto

Research output

as
Jump to: Working papers Articles Chapters

Working papers

  1. Hassan Qudrat-Ullah, 2015. "Improving Human Performance in Dynamic Tasks through Debriefing," Proceedings of International Academic Conferences 3105092, International Institute of Social and Economic Sciences.

Articles

  1. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
  2. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
  3. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
  4. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
  5. Hassan Qudrat-Ullah, 2005. "MDESRAP: a model for understanding the dynamics of electricity supply, resources and pollution," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 1-14.
  6. Qudrat-Ullah, H & Davidsen, Pal I, 2001. "Understanding the dynamics of electricity supply, resources and pollution: Pakistan's case," Energy, Elsevier, vol. 26(6), pages 595-606.

Chapters

  1. Hassan Qudrat-Ullah, 2013. "Resources, pollution and sustainable energy policies: the case of Pakistan," Chapters,in: Handbook of Sustainable Development Planning, chapter 9, pages 181-212 Edward Elgar Publishing.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

    Sorry, no citations of working papers recorded.

Articles

  1. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.

    Cited by:

    1. Akber, Muhammad Zeshan & Thaheem, Muhammad Jamaluddin & Arshad, Husnain, 2017. "Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix," Energy Policy, Elsevier, vol. 111(C), pages 111-126.
    2. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.
    3. Shakeel, Shah Rukh & Takala, Josu & Shakeel, Waqas, 2016. "Renewable energy sources in power generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 421-434.
    4. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    5. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.

  2. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.

    Cited by:

    1. Patrice Bougette & Christophe Charlier, 2014. "Renewable Energy, Subsidies, and the WTO: Where has the 'Green' Gone?," Post-Print hal-01058293, HAL.
    2. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    3. Yu-zhuo, Zhang & Xin-gang, Zhao & Ling-zhi, Ren & Ji, Liang & Ping-kuo, Liu, 2017. "The development of China's biomass power industry under feed-in tariff and renewable portfolio standard: A system dynamics analysis," Energy, Elsevier, vol. 139(C), pages 947-961.
    4. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    5. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-23, March.
    6. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    7. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.

  3. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.

    Cited by:

    1. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
    2. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    3. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    4. Alan C. Brent & Josephine K. Musango & Suzanne Smit & Nalini S. Pillay & Andries Botha & Rudolph Louw & Stephen Roper & Thokozani Simelani & Jai K. Clifford-Holmes & Leon Pretorius, 2017. "Utilization of System Dynamics in Southern Africa: A Systematic Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 34(6), pages 657-670, November.
    5. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    6. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    7. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    8. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    9. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    10. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    11. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.

  4. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.

    Cited by:

    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    3. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    4. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    5. Ibrahim Abada & Vincent Briat & Olivier Massol, 2011. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," EconomiX Working Papers 2011-13, University of Paris Nanterre, EconomiX.
    6. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    7. Saldarriaga-Isaza, Adrián & Arango, Santiago & Villegas-Palacio, Clara, 2015. "A behavioral model of collective action in artisanal and small-scale gold mining," Ecological Economics, Elsevier, vol. 112(C), pages 98-109.
    8. Yu-zhuo, Zhang & Xin-gang, Zhao & Ling-zhi, Ren & Ji, Liang & Ping-kuo, Liu, 2017. "The development of China's biomass power industry under feed-in tariff and renewable portfolio standard: A system dynamics analysis," Energy, Elsevier, vol. 139(C), pages 947-961.
    9. Lauren Gies & Datu Agusdinata & Venkatesh Merwade, 2014. "Drought adaptation policy development and assessment in East Africa using hydrologic and system dynamics modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 789-813, November.
    10. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    11. Debra Sandor & Sadie Fulton & Jill Engel-Cox & Corey Peck & Steve Peterson, 2018. "System Dynamics of Polysilicon for Solar Photovoltaics: A Framework for Investigating the Energy Security of Renewable Energy Supply Chains," Sustainability, MDPI, Open Access Journal, vol. 10(1), pages 1-27, January.
    12. Naila Nazir & Salman Ahmad, 2018. "Forest land conversion dynamics: a case of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 389-405, February.
    13. Yi Zuo & Ying-ling Shi & Yu-zhuo Zhang, 2017. "Research on the Sustainable Development of an Economic-Energy-Environment (3E) System Based on System Dynamics (SD): A Case Study of the Beijing-Tianjin-Hebei Region in China," Sustainability, MDPI, Open Access Journal, vol. 9(10), pages 1-23, September.
    14. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, Open Access Journal, vol. 10(7), pages 1-17, June.
    15. Yuan, Hongping & Wang, Jiayuan, 2014. "A system dynamics model for determining the waste disposal charging fee in construction," European Journal of Operational Research, Elsevier, vol. 237(3), pages 988-996.
    16. Musango, Josephine K. & Brent, Alan C. & Amigun, Bamikole & Pretorius, Leon & Müller, Hans, 2011. "Technology sustainability assessment of biodiesel development in South Africa: A system dynamics approach," Energy, Elsevier, vol. 36(12), pages 6922-6940.
    17. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, Open Access Journal, vol. 6(3), pages 1-18, August.
    18. Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, Open Access Journal, vol. 9(4), pages 1-23, March.
    19. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    20. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    21. Guertler, Benjamin & Spinler, Stefan, 2015. "When does operational risk cause supply chain enterprises to tip? A simulation of intra-organizational dynamics," Omega, Elsevier, vol. 57(PA), pages 54-69.
    22. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    23. Shin, Juneseuk & Shin, Wan-Seon & Lee, Changyong, 2013. "An energy security management model using quality function deployment and system dynamics," Energy Policy, Elsevier, vol. 54(C), pages 72-86.
    24. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    25. Ibanez, Eduardo & Magee, Timothy & Clement, Mitch & Brinkman, Gregory & Milligan, Michael & Zagona, Edith, 2014. "Enhancing hydropower modeling in variable generation integration studies," Energy, Elsevier, vol. 74(C), pages 518-528.
    26. Chai, Kah-Hin & Yeo, Catrina, 2012. "Overcoming energy efficiency barriers through systems approach—A conceptual framework," Energy Policy, Elsevier, vol. 46(C), pages 460-472.
    27. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    28. Xiaohua Song & Xubei Zhang & Yun Long & Yiwei Guo, 2017. "Study on the Evolution Mechanism and Development Forecasting of China’s Power Supply Structure Clean Development," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-22, February.
    29. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    30. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    31. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, Open Access Journal, vol. 9(12), pages 1-18, December.
    32. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    33. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    34. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    35. Zhou, Zhong-bing & Dong, Xiu-cheng, 2012. "Analysis about the seasonality of China's crude oil import based on X-12-ARIMA," Energy, Elsevier, vol. 42(1), pages 281-288.

  5. Hassan Qudrat-Ullah, 2005. "MDESRAP: a model for understanding the dynamics of electricity supply, resources and pollution," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 1-14.

    Cited by:

    1. Shahmohammadi, M. Sadegh & Mohd. Yusuff, Rosnah & Keyhanian, Sina & Shakouri G., Hamed, 2015. "A decision support system for evaluating effects of Feed-in Tariff mechanism: Dynamic modeling of Malaysia’s electricity generation mix," Applied Energy, Elsevier, vol. 146(C), pages 217-229.
    2. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    3. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    4. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    5. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    6. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    7. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    8. Tang, Ou & Rehme, Jakob, 2017. "An investigation of renewable certificates policy in Swedish electricity industry using an integrated system dynamics model," International Journal of Production Economics, Elsevier, vol. 194(C), pages 200-213.
    9. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.

  6. Qudrat-Ullah, H & Davidsen, Pal I, 2001. "Understanding the dynamics of electricity supply, resources and pollution: Pakistan's case," Energy, Elsevier, vol. 26(6), pages 595-606.

    Cited by:

    1. Ochoa, Camila & Gore, Olga, 2015. "The Finnish power market: Are imports from Russia low-cost?," Energy Policy, Elsevier, vol. 80(C), pages 122-132.
    2. Hasani, Masoud & Hosseini, Seyed Hamid, 2011. "Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms," Energy, Elsevier, vol. 36(1), pages 277-293.
    3. Ibrahim Abada & Vincent Briat & Olivier Massol, 2011. "Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach," EconomiX Working Papers 2011-13, University of Paris Nanterre, EconomiX.
    4. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    5. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    6. Qudrat-Ullah, Hassan, 2013. "Understanding the dynamics of electricity generation capacity in Canada: A system dynamics approach," Energy, Elsevier, vol. 59(C), pages 285-294.
    7. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
    8. Qudrat-Ullah, Hassan, 2017. "How to enhance the future use of energy policy simulation models through ex post validation," Energy, Elsevier, vol. 120(C), pages 58-66.
    9. Qudrat-Ullah, Hassan, 2015. "Independent power (or pollution) producers? Electricity reforms and IPPs in Pakistan," Energy, Elsevier, vol. 83(C), pages 240-251.
    10. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    11. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.

Chapters

    Sorry, no citations of chapters recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. No paper was announced in a field specific NEP report

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Hassan Qudrat-Ullah should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.