IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11984-d922378.html
   My bibliography  Save this article

Stakeholder Workshops Informing System Modeling—Analyzing the Urban Food–Water–Energy Nexus in Amman, Jordan

Author

Listed:
  • Bernd Klauer

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Karin Küblböck

    (Austrian Foundation for Development Research—ÖFSE, A-1090 Wien, Austria)

  • Ines Omann

    (Austrian Foundation for Development Research—ÖFSE, A-1090 Wien, Austria)

  • Raphael Karutz

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Christian Klassert

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Yuanzao Zhu

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Heinrich Zozmann

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Mikhail Smilovic

    (International Institute for Applied Systems Analysis—IIASA, A-2361 Laxenburg, Austria)

  • Samer Talozi

    (Methods for Irrigation and Agriculture (MIRRA), Amman 11194, Jordan)

  • Anjuli Jain Figueroa

    (Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
    U.S. Department of Energy, Washington, DC 20585, USA)

  • Hannes Grohs

    (Austrian Foundation for Development Research—ÖFSE, A-1090 Wien, Austria)

  • Jasmin Heilemann

    (Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany)

  • Steven Gorelick

    (Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA)

Abstract

Large cities worldwide are increasingly suffering from a nexus of food, water, and energy supply challenges. This complex nexus can be analyzed with modern physico-economic system models. Only when practical knowledge from those affected, experts, and decision makers is incorporated alongside various other data sources, however, are the analyses suitable for policy advice. Here, we present a concept for “Sustainability Nexus Workshops” suitable for extracting and preparing relevant practical knowledge for nexus modeling and apply it to the case of Amman, Jordan. The experiences of the workshop participants show that, although water scarcity is the predominant resource problem in Jordan, there is a close connection between food, water, and energy as well as between resource supply and urbanization. To prevent the foreseeable significant degradation of water supply security, actions are needed across all nexus dimensions. The stakeholders demonstrate an awareness of this and suggest a variety of technical measures, policy solutions, and individual behavioral changes—often in combination. Improving the supply of food, water, and energy requires political and institutional reforms. In developing these, it must be borne in mind that the prevalent informal structures and illegal activities are both strategies for coping with nexus challenges and causes of them.

Suggested Citation

  • Bernd Klauer & Karin Küblböck & Ines Omann & Raphael Karutz & Christian Klassert & Yuanzao Zhu & Heinrich Zozmann & Mikhail Smilovic & Samer Talozi & Anjuli Jain Figueroa & Hannes Grohs & Jasmin Heile, 2022. "Stakeholder Workshops Informing System Modeling—Analyzing the Urban Food–Water–Energy Nexus in Amman, Jordan," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11984-:d:922378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I. Heinz & M. Pulido-Velazquez & J. Lund & J. Andreu, 2007. "Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1103-1125, July.
    2. Elizabeth Whitman, 2019. "A land without water: the scramble to stop Jordan from running dry," Nature, Nature, vol. 573(7772), pages 20-23, September.
    3. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    4. Raphael Karutz & Ines Omann & Steven M. Gorelick & Christian J. A. Klassert & Heinrich Zozmann & Yuanzao Zhu & Sigrun Kabisch & Annegret Kindler & Anjuli Jain Figueroa & Ankun Wang & Karin Küblböck & , 2022. "Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus—A Participatory Approach for Pune and the Bhima Basin, India," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Khan, Shahbaz & Hanjra, Munir A., 2009. "Footprints of water and energy inputs in food production - Global perspectives," Food Policy, Elsevier, vol. 34(2), pages 130-140, April.
    6. Grzegorz Baran & Aleksandra Berkowicz, 2020. "Sustainability Living Labs as a Methodological Approach to Research on the Cultural Drivers of Sustainable Development," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    7. Giorgos Kallis & Nuno Videira & Paula Antunes & Ângela Guimarães Pereira & Clive L Spash & Harry Coccossis & Serafin Corral Quintana & Leandro del Moral & Dionisia Hatzilacou & Gonçalo Lobo & Alexa, 2006. "Participatory Methods for Water Resources Planning," Environment and Planning C, , vol. 24(2), pages 215-234, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    2. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    3. Ji-ping Gao & Cheng Su & Hai-yan Wang & Li-hua Zhai & Yun-tao Pan, 2019. "Research fund evaluation based on academic publication output analysis: the case of Chinese research fund evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 959-972, May.
    4. Vibhas Sukhwani & Arie Nurzaman & Nadia Paramitha Kusumawardhani & Anwaar Mohammed AlHinai & Liu Hanyu & Rajib Shaw, 2019. "Enhancing Food Security by Institutionalizing Collaborative Food Alliances in Urban Areas," Sustainability, MDPI, vol. 11(15), pages 1-16, July.
    5. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    6. World Bank [WB], 2016. "High and Dry : Climate Change, Water, and the Economy," Working Papers id:10736, eSocialSciences.
    7. Azzurra ANNUNZIATA & Debora SCARPATO, 2014. "Factors affecting consumer attitudes towards food products with sustainable attributes," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 60(8), pages 353-363.
    8. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    9. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    10. Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.
    11. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    12. Schwerhoff, Gregor & Sy, Mouhamadou, 2017. "Financing renewable energy in Africa – Key challenge of the sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 393-401.
    13. Vallury, Sechindra & Abbott, Joshua K. & Shin, Hoon C. & Anderies, John M., 2020. "Sustaining Coupled Irrigation Infrastructures: Multiple Instruments for Multiple Dilemmas," Ecological Economics, Elsevier, vol. 178(C).
    14. Sevigne, Eva & Gasol, Carles M. & Brun, Filippo & Rovira, Laura & Pagés, Josep Maria & Camps, Francesc & Rieradevall, Joan & Gabarrell, Xavier, 2011. "Water and energy consumption of Populus spp. bioenergy systems: A case study in Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1133-1140, February.
    15. Ozturk, Ilhan, 2015. "Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries," Energy, Elsevier, vol. 93(P1), pages 999-1010.
    16. Mariana Brondi & Mohamed Eisa & Ricardo Bortoletto-Santos & Donata Drapanauskaite & Tara Reddington & Clinton Williams & Caue Ribeiro & Jonas Baltrusaitis, 2023. "Recovering, Stabilizing, and Reusing Nitrogen and Carbon from Nutrient-Containing Liquid Waste as Ammonium Carbonate Fertilizer," Agriculture, MDPI, vol. 13(4), pages 1-28, April.
    17. Luca Falasconi & Clara Cicatiello & Silvio Franco & Andrea Segrè & Marco Setti & Matteo Vittuari, 2019. "Such a Shame! A Study on Self-Perception of Household Food Waste," Sustainability, MDPI, vol. 11(1), pages 1-13, January.
    18. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    19. Manab Das & Debashish Goswami & Anshuman & Alok Adholeya, 2014. "Land degradation, water scarcity and sustainability," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 17, pages 443-461, Edward Elgar Publishing.
    20. Mirade, Pierre-Sylvain & Perret, Bruno & Guillemin, Hervé & Picque, Daniel & Desserre, Béatrice & Montel, Marie-Christine & Corrieu, Georges, 2012. "Quantifying energy savings during cheese ripening after implementation of sequential air ventilation in an industrial cheesemaking plant," Energy, Elsevier, vol. 46(1), pages 248-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11984-:d:922378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.