Modeling the Performance of a Continuous Durum Wheat Cropping System in a Mediterranean Environment: Carbon and Water Footprint at Different Sowing Dates, Under Rainfed and Irrigated Water Regimes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
- Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Kefauver, Shawn C. & Nieto-Taladriz, Maria Teresa & Serret, Maria Dolores & Araus, José Luis, 2022. "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions," Agricultural Water Management, Elsevier, vol. 259(C).
- Trombetta, Andrea & Iacobellis, Vito & Tarantino, Eufemia & Gentile, Francesco, 2016. "Calibration of the AquaCrop model for winter wheat using MODIS LAI images," Agricultural Water Management, Elsevier, vol. 164(P2), pages 304-316.
- Zeleke, K.T. & Nendel, C., 2016. "Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing," Agricultural Water Management, Elsevier, vol. 166(C), pages 139-148.
- Perry, Chris, 2014. "Water footprints: Path to enlightenment, or false trail?," Agricultural Water Management, Elsevier, vol. 134(C), pages 119-125.
- Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
- Khan, Shahbaz & Hanjra, Munir A., 2009. "Footprints of water and energy inputs in food production - Global perspectives," Food Policy, Elsevier, vol. 34(2), pages 130-140, April.
- Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
- Wellens, Joost & Raes, Dirk & Fereres, Elias & Diels, Jan & Coppye, Cecilia & Adiele, Joy Geraldine & Ezui, Kodjovi Senam Guillaume & Becerra, Luis-Augusto & Selvaraj, Michael Gomez & Dercon, Gerd & H, 2022. "Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)," Agricultural Water Management, Elsevier, vol. 263(C).
- Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
- Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
- Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
- Maraseni, T.N. & Cockfield, G., 2011. "Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia," Agricultural Systems, Elsevier, vol. 104(6), pages 451-458, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
- Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
- Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
- Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
- Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
- Ji-ping Gao & Cheng Su & Hai-yan Wang & Li-hua Zhai & Yun-tao Pan, 2019. "Research fund evaluation based on academic publication output analysis: the case of Chinese research fund evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 959-972, May.
- Vibhas Sukhwani & Arie Nurzaman & Nadia Paramitha Kusumawardhani & Anwaar Mohammed AlHinai & Liu Hanyu & Rajib Shaw, 2019. "Enhancing Food Security by Institutionalizing Collaborative Food Alliances in Urban Areas," Sustainability, MDPI, vol. 11(15), pages 1-16, July.
- Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
- World Bank [WB], 2016. "High and Dry : Climate Change, Water, and the Economy," Working Papers id:10736, eSocialSciences.
- Azzurra ANNUNZIATA & Debora SCARPATO, 2014. "Factors affecting consumer attitudes towards food products with sustainable attributes," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 60(8), pages 353-363.
- Feng, Suwei & Ding, Weihua & Shi, Chenchen & Zhu, Xiaoling & Hu, Tiezhu & Ru, Zhengang, 2023. "Optimizing the spatial distribution of roots by supplemental irrigation to improve grain yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 275(C).
- Beibei Guo & Xian Zou & Tingting Cheng & Yan Li & Jie Huang & Tingting Sun & Yi Tong, 2025. "Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China," Land, MDPI, vol. 14(8), pages 1-24, August.
- Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
- Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
- Michał Napierała & Mariusz Sojka & Joanna Jaskuła, 2023. "Impact of Water Meadow Restoration on Forage Hay Production in Different Hydro-Meteorological Conditions: A Case Study of Racot, Central Poland," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
- Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.
- Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
- Schwerhoff, Gregor & Sy, Mouhamadou, 2017. "Financing renewable energy in Africa – Key challenge of the sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 393-401.
- Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
- Vallury, Sechindra & Abbott, Joshua K. & Shin, Hoon C. & Anderies, John M., 2020. "Sustaining Coupled Irrigation Infrastructures: Multiple Instruments for Multiple Dilemmas," Ecological Economics, Elsevier, vol. 178(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:259-:d:1576642. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.