IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10103-d888589.html
   My bibliography  Save this article

Connection between the Spatial Characteristics of the Road and Railway Networks and the Air Pollution (PM10) in Urban–Rural Fringe Zones

Author

Listed:
  • Seyedehmehrmanzar Sohrab

    (Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem u. 2-6, H-6722 Szeged, Hungary)

  • Nándor Csikós

    (Department of Soil Mapping and Environmental Informatics, Institute for Soil Sciences, Centre for Agricultural Research, H-1022 Budapest, Hungary)

  • Péter Szilassi

    (Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem u. 2-6, H-6722 Szeged, Hungary)

Abstract

Atmospheric particulate matter (PM10) is one of the most important pollutants for human health, and road transport could be a major anthropogenic source of it. Several research studies have shown the impact of roads on the air quality in urban areas, but the relationship between road and rail networks and ambient PM10 concentrations has not been well studied, especially in suburban and rural landscapes. In this study, we examined the link between the spatial characteristics of each road type (motorway, primary road, secondary road, and railway) and the annual average PM10 concentration. We used the European 2931 air quality (AQ) station dataset, which is classified into urban, suburban, and rural landscapes. Our results show that in urban and rural landscapes, the spatial characteristics (the density of the road network and its distance from the AQ monitoring points) have a significant statistical relationship with PM10 concentrations. According to our findings from AQ monitoring sites within the urban landscape, there is a significant negative relationship between the annual average PM10 concentration and the density of the railway network. This result can be explained by the driving wind generated by railway trains (mainly electric trains). Among the road network types, all road types in the urban landscape, only motorways in the suburban landscape, and only residential roads in the rural landscape have a significant positive statistical relationship with the PM10 values at the AQ monitoring points. Our results show that in the suburban zones, which represent the rural–urban fringe, motorways have a strong influence on PM-related air pollution. In the suburban areas, the speed of vehicles changes frequently near motorways and intersections, so higher traffic-related PM10 emission levels can be expected in these areas. The findings of this study can be used to decrease transportation-related environmental conflicts related to the air quality in urban, urban–rural fringe, and rural (agricultural) landscapes.

Suggested Citation

  • Seyedehmehrmanzar Sohrab & Nándor Csikós & Péter Szilassi, 2022. "Connection between the Spatial Characteristics of the Road and Railway Networks and the Air Pollution (PM10) in Urban–Rural Fringe Zones," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10103-:d:888589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    2. Mohammad Hashem Askariyeh & Madhusudhan Venugopal & Haneen Khreis & Andrew Birt & Josias Zietsman, 2020. "Near-Road Traffic-Related Air Pollution: Resuspended PM 2.5 from Highways and Arterials," IJERPH, MDPI, vol. 17(8), pages 1-11, April.
    3. Guozhu Cheng & Changru Mu & Liang Xu & Xuejian Kang, 2021. "Research on Truck Traffic Volume Conditions of Auxiliary Lanes on Two-Lane Highways," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    4. Xiaojian Hu & Nuo Chen & Nan Wu & Bicheng Yin, 2021. "The Potential Impacts of Electric Vehicles on Urban Air Quality in Shanghai City," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    5. Ingrid Priscylla Silva Araújo & Dayana Bastos Costa, 2022. "Measurement and Monitoring of Particulate Matter in Construction Sites: Guidelines for Gravimetric Approach," Sustainability, MDPI, vol. 14(1), pages 1-23, January.
    6. Chuang Sun & Xuegang Chen & Siyu Zhang & Tianhao Li, 2022. "Can Changes in Urban Form Affect PM 2.5 Concentration? A Comparative Analysis from 286 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    7. Gregorio Sgrigna & Hélder Relvas & Ana Isabel Miranda & Carlo Calfapietra, 2022. "Particulate Matter in an Urban–Industrial Environment: Comparing Data of Dispersion Modeling with Tree Leaves Deposition," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    8. Marinella Giunta, 2020. "Assessment of the Impact of CO, NO x and PM 10 on Air Quality during Road Construction and Operation Phases," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    9. Luo, Zhi & Wan, Guanghua & Wang, Chen & Zhang, Xun, 2018. "Urban pollution and road infrastructure: A case study of China," China Economic Review, Elsevier, vol. 49(C), pages 171-183.
    10. Seoyeon Lee & Seung-Jae Lee & Jung-Hyuk Kang & Eun-Suk Jang, 2021. "Spatial and Temporal Variations in Atmospheric Ventilation Index Coupled with Particulate Matter Concentration in South Korea," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    11. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2022. "Assessment of the Road Traffic Air Pollution in Urban Contexts: A Statistical Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    12. Yu Chen & Yuandi Wang & Ruifeng Hu, 2020. "Sustainability by High–Speed Rail: The Reduction Mechanisms of Transportation Infrastructure on Haze Pollution," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Liang & Liyue Zeng & Shengzhen Zhou & Xuemei Wang & Jiajia Hua & Xuelin Zhang & Zhongli Gu & Lejian He, 2023. "Combined Effects of Photochemical Processes, Pollutant Sources and Urban Configuration on Photochemical Pollutant Concentrations," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    2. Gosztonyi, Ákos & Demmler, Joanne C. & Juhola, Sirkku & Ala-Mantila, Sanna, 2023. "Ambient air pollution-related environmental inequality and environmental dissimilarity in Helsinki Metropolitan Area, Finland," Ecological Economics, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    2. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    3. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    4. Huang, Yan & Ma, Liang & Cao, Jason, 2023. "Exploring spatial heterogeneity in the high-speed rail impact on air quality," Journal of Transport Geography, Elsevier, vol. 106(C).
    5. Yaqin Wang & Shengsheng Li & Yan Jiang, 2022. "Can Transportation Infrastructure Construction Improve the Urban Green Development Efficiency? Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    6. Xiaoli Hu & Jieping Chen & Shanlang Lin, 2023. "Influence from highways’ development on green technological innovation: the case of Yangtze River economic belt in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11095-11120, October.
    7. Yujing Guo & Qian Zhang & Kin Keung Lai & Yingqin Zhang & Shubin Wang & Wanli Zhang, 2020. "The Impact of Urban Transportation Infrastructure on Air Quality," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    8. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2022. "Problems and Directions in Creating a National Non-Road Mobile Machinery Emission Inventory: A Critical Review," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    9. Cui, Yin & Li, Zhiyong & Sun, Yu & Sun, Weizheng, 2023. "Environmental performance of an urban passenger transport system and influencing factors: A case study of Tianjin, China," Utilities Policy, Elsevier, vol. 80(C).
    10. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2023. "Effects of the SARS-CoV-2 Pandemic on CO 2 Emissions in the Port Areas of the Strait of Messina," Sustainability, MDPI, vol. 15(12), pages 1-30, June.
    11. Jia Shen & Xiaohong Ren & Zhitao Feng, 2024. "Study on the Railway Effect of the Coordinated Development of the Economy and Environment in the Chengdu–Chongqing Economic Circle," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    12. Weiguang Wang & Yangyang Wang, 2023. "Regional Differences, Dynamic Evolution and Driving Factors Analysis of PM 2.5 in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    13. Cheng Wang & Liyang Wei & Kun Wang & Hongya Tang & Bo Yang & Mengfan Li, 2022. "Investigating the Factors Affecting Rider’s Decision on Overtaking Behavior: A Naturalistic Riding Research in China," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    14. Gang Zhao & Xiaolin Wang & Michael Negnevitsky & Hengyun Zhang & Chengjiang Li, 2022. "Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    15. Xu, Zhiwei & Wen, Qiang & Zhang, Teng, 2023. "Trade policy and air pollution: Evidence from the adjustment of the export tax rebate in China," Economic Modelling, Elsevier, vol. 128(C).
    16. Yu Chen & Yuandi Wang & Ruifeng Hu, 2020. "Sustainability by High–Speed Rail: The Reduction Mechanisms of Transportation Infrastructure on Haze Pollution," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    17. Temitope Oluwadairo & Lawrence Whitehead & Elaine Symanski & Cici Bauer & Arch Carson & Inkyu Han, 2022. "Effects of Road Traffic on the Accuracy and Bias of Low-Cost Particulate Matter Sensor Measurements in Houston, Texas," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    18. Xiaole Wang & Feng Dong & Yuling Pan & Yajie Liu, 2022. "Transport Infrastructure, High-Quality Development and Industrial Pollution: Fresh Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-24, August.
    19. Sun, Chuanwang & Zhang, Wenyue & Fang, Xingming & Gao, Xiang & Xu, Meilian, 2019. "Urban public transport and air quality: Empirical study of China cities," Energy Policy, Elsevier, vol. 135(C).
    20. Khairul Nizam Mohd Isa & Zailina Hashim & Juliana Jalaludin & Leslie Thian Lung Than & Jamal Hisham Hashim, 2020. "The Effects of Indoor Pollutants Exposure on Allergy and Lung Inflammation: An Activation State of Neutrophils and Eosinophils in Sputum," IJERPH, MDPI, vol. 17(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10103-:d:888589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.