IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022223.html
   My bibliography  Save this article

Assessing the nexus of electric vehicle and energy policies on health risks

Author

Listed:
  • Shih, Hsiu-Ching
  • Chiang, Chia-Yun
  • Lai, Hsin-Chih
  • Hsiao, Min-Chuan
  • Chen, Li-Heng
  • Ma, Hwong-wen

Abstract

The intricate interactions between electric vehicles and energy policies necessitate a methodology that integrates technological, economic and environmental assessments. Given the spatial and temporal manifestations of nexus effects, the coordination between the central and local governments and the timing of policy implementation has to be considered to maximize synergy and minimize the tradeoffs between both policies. This study combined an econometric model that incorporates a technological prediction model with an atmospheric model. The aim is to explore the nexus effects of electric vehicle and energy policies and assess the resultant health risks attributed to PM2.5 emissions. The findings from this study demonstrated that different locations benefit or suffer differently concerning changes in health risks after the government banned fuel-powered vehicles and provided subsidies for electric vehicles. The modeling outputs highlight the effects of time lags, spatial transfers, and net reductions in mortality on risk shifts resulting from the policy nexus. The key factors contributing to spatial and temporal variations in risks include technological evolution, facility lifespans and locations, and population density.

Suggested Citation

  • Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022223
    DOI: 10.1016/j.energy.2023.128828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    2. Xiaojian Hu & Nuo Chen & Nan Wu & Bicheng Yin, 2021. "The Potential Impacts of Electric Vehicles on Urban Air Quality in Shanghai City," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    3. Ingemar Leksell & Ari Rabl, 2001. "Air Pollution and Mortality: Quantification and Valuation of Years of Life Lost," Risk Analysis, John Wiley & Sons, vol. 21(5), pages 843-843, October.
    4. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    5. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.
    6. Fan, Ruguo & Bao, Xuguang & Du, Kang & Wang, Yuanyuan & Wang, Yitong, 2022. "The effect of government policies and consumer green preferences on the R&D diffusion of new energy vehicles: A perspective of complex network games," Energy, Elsevier, vol. 254(PA).
    7. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    8. Pollitt, Hector & Park, Seung-Joon & Lee, Soocheol & Ueta, Kazuhiro, 2014. "An economic and environmental assessment of future electricity generation mixes in Japan – an assessment using the E3MG macro-econometric model," Energy Policy, Elsevier, vol. 67(C), pages 243-254.
    9. Ji, Hyunjung & Shin, Su Hyun, 2021. "Health benefits of local government sustainability efforts: A social cognitive perspective," Ecological Economics, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    2. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    3. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    4. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    5. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    6. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    7. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    8. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    9. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    10. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    11. Olivier Chanel, 2022. "Impact of COVID‑19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long‑Term Effects on Mortality [Impact sur la pollution de l’air des restri," Working Papers hal-03778336, HAL.
    12. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    13. Mahesh D. Pandey & Jatin S. Nathwani, 2003. "Canada Wide Standard for Particulate Matter and Ozone: Cost‐Benefit Analysis Using a Life Quality Index," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 55-67, February.
    14. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    15. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    16. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    17. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    18. Mark Delucchi & Don McCubbin, 2011. "External Costs of Transport in the United States," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 15, Edward Elgar Publishing.
    19. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    20. Monasterolo, Irene & de Angelis, Luca, 2020. "Blind to carbon risk? An analysis of stock market reaction to the Paris Agreement," Ecological Economics, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.