IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9676-d881484.html
   My bibliography  Save this article

Economic and Environmental Assessment of Biomass Power Plants in Southern Italy

Author

Listed:
  • Giada La Scalia

    (Department of Engineering, University of Palermo, Viale delle Scienze, Bld 8, 90128 Palermo, Italy)

  • Luca Adelfio

    (Department of Engineering, University of Palermo, Viale delle Scienze, Bld 8, 90128 Palermo, Italy)

  • Concetta Manuela La Fata

    (Department of Engineering, University of Palermo, Viale delle Scienze, Bld 8, 90128 Palermo, Italy)

  • Rosa Micale

    (Department of Engineering, University of Messina, Contrada di Dio, 98166 Messina, Italy)

Abstract

In 2019, Europe adopted the New Green Deal as a strategic plan to become a competitive, resource-efficient, and driven economy by reducing its gas emissions and carbon footprint. Due the COVID-19 pandemic, this strategic plan was recently updated to expedite the green transition of European industries. Therefore, the present paper deals with the problem of deciding an appropriate size for a biomass plant that directly produces electric energy by means of two different conversion processes: combustion and gasification. After an initial estimation of the energy potential in western Sicily, GIS data of biomass growth were used to identify the appropriate size for the power plants under investigation. The economic feasibility of biomass utilization was evaluated over a capacity range of 10 to 30 MW, considering total capital investments, revenues from energy sales, and total operating costs. Moreover, the effect of variations on incentive prices was analyzed by means of a sensitivity analysis. Comparing the different plant solutions considered, the environmental sustainability was also analyzed using the life cycle assessment (LCA) approach. The results showed that the combustion solution had a higher profitability and a lower environmental impact for each plant size. The obtained results also demonstrated that providing power from residual biomass in small agricultural communities would significantly reduce their environmental impacts while improving the economic feasibility of their waste management practices.

Suggested Citation

  • Giada La Scalia & Luca Adelfio & Concetta Manuela La Fata & Rosa Micale, 2022. "Economic and Environmental Assessment of Biomass Power Plants in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9676-:d:881484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lourinho, Gonçalo & Brito, Paulo, 2015. "Assessment of biomass energy potential in a region of Portugal (Alto Alentejo)," Energy, Elsevier, vol. 81(C), pages 189-201.
    2. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Cristina Moliner & Elisabetta Arato & Filippo Marchelli, 2021. "Current Status of Energy Production from Solid Biomass in Southern Italy," Energies, MDPI, vol. 14(9), pages 1-21, April.
    4. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    5. Beagle, E. & Belmont, E., 2019. "Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States," Energy Policy, Elsevier, vol. 128(C), pages 267-275.
    6. Gustavsson, Leif & Börjesson, Pål & Johansson, Bengt & Svenningsson, Per, 1995. "Reducing CO2 emissions by substituting biomass for fossil fuels," Energy, Elsevier, vol. 20(11), pages 1097-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Flavio Scrucca & Grazia Barberio & Laura Cutaia & Caterina Rinaldi, 2023. "Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment," Energies, MDPI, vol. 17(1), pages 1-16, December.
    3. Emerita Delgado-Plaza & Artemio Carrillo & Hugo Valdés & Norberto Odobez & Juan Peralta-Jaramillo & Daniela Jaramillo & José Reinoso-Tigre & Victor Nuñez & Juan Garcia & Carmina Reyes-Plascencia & Nes, 2022. "Key Processes for the Energy Use of Biomass in Rural Sectors of Latin America," Sustainability, MDPI, vol. 15(1), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    3. Sahoo, K. & Hawkins, G.L. & Yao, X.A. & Samples, K. & Mani, S., 2016. "GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US," Applied Energy, Elsevier, vol. 182(C), pages 260-273.
    4. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).
    5. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    6. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    7. Campbell, Robert M. & Venn, Tyron J. & Anderson, Nathaniel M., 2016. "Social preferences toward energy generation with woody biomass from public forests in Montana, USA," Forest Policy and Economics, Elsevier, vol. 73(C), pages 58-67.
    8. Berndes, Goran & Hansson, Julia, 2007. "Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels," Energy Policy, Elsevier, vol. 35(12), pages 5965-5979, December.
    9. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    11. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    13. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    14. Johannes Full & Mathias Trauner & Robert Miehe & Alexander Sauer, 2021. "Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential," Energies, MDPI, vol. 14(22), pages 1-22, November.
    15. Nebojsa Dedovic & Sasa Igic & Todor Janic & Snezana Matic-Kekic & Ondrej Ponjican & Milan Tomic & Lazar Savin, 2012. "Efficiency of Small Scale Manually Fed Boilers —Mathematical Models," Energies, MDPI, vol. 5(5), pages 1-20, May.
    16. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    18. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    19. Antonio Alberto Rodríguez Sousa & Claudia Tribaldos-Anda & Sergio A. Prats & Clarisse Brígido & José Muñoz-Rojas & Alejandro J. Rescia, 2022. "Impacts of Fertilization on Environmental Quality across a Gradient of Olive Grove Management Systems in Alentejo (Portugal)," Land, MDPI, vol. 11(12), pages 1-19, December.
    20. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9676-:d:881484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.