IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p169-d1011598.html
   My bibliography  Save this article

Key Processes for the Energy Use of Biomass in Rural Sectors of Latin America

Author

Listed:
  • Emerita Delgado-Plaza

    (Escuela Superior Politécnica del Litoral, ESPOL, FIMCP-CDTS, ESPOL Polytechnic University, Campus Gustavo Galindo Km, 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Artemio Carrillo

    (Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Hugo Valdés

    (Departamento de Computación e Industrias, Universidad Catolica del Maule (UCM), Talca 3460000, Chile)

  • Norberto Odobez

    (Centro de Energía y Ambiente (CEA), Facultad Regional Delta, Universidad Tecnológica Nacional, Mendoza 5500, Argentina)

  • Juan Peralta-Jaramillo

    (Escuela Superior Politécnica del Litoral, ESPOL, FIMCP-CDTS, ESPOL Polytechnic University, Campus Gustavo Galindo Km, 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Daniela Jaramillo

    (Escuela Superior Politécnica del Litoral, ESPOL, FIMCP-CDTS, ESPOL Polytechnic University, Campus Gustavo Galindo Km, 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • José Reinoso-Tigre

    (Escuela Superior Politécnica del Litoral, ESPOL, FIMCP-CDTS, ESPOL Polytechnic University, Campus Gustavo Galindo Km, 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador)

  • Victor Nuñez

    (Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Juan Garcia

    (Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Carmina Reyes-Plascencia

    (Laboratorio de Energías Renovables, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass Ruta 8 y Ruta 101, Pando 91000, Uruguay
    Área Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República, Avenida General Flores 2124, CC 1157, Montevideo 11800, Uruguay)

  • Nestor Tancredi

    (Laboratorio de Energías Renovables, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, By Pass Ruta 8 y Ruta 101, Pando 91000, Uruguay
    Área Fisicoquímica, DETEMA, Facultad de Química, Universidad de la República, Avenida General Flores 2124, CC 1157, Montevideo 11800, Uruguay)

  • Franco Gallardo

    (Departamento de Obras Civiles, Universidad Católica del Maule (UCM), Talca 3460000, Chile)

  • Ivan Merino

    (Departamento de Computación e Industrias, Universidad Catolica del Maule (UCM), Talca 3460000, Chile)

  • Gabriel León

    (Departamento de Sistemas Energéticos, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad Universitaria, Ciudad de México 04510, Mexico)

  • José Torres

    (Centro de Energía y Ambiente (CEA), Facultad Regional Delta, Universidad Tecnológica Nacional, Mendoza 5500, Argentina)

  • Carlos Garcia

    (Centro de Energía y Ambiente (CEA), Facultad Regional Delta, Universidad Tecnológica Nacional, Mendoza 5500, Argentina)

  • Ian Sosa-Tinoco

    (Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Sonora, Ave. Antonio Caso S/N, Ciudad Obregón 85000, Mexico)

Abstract

An alternative to mitigate the consumption of fossil fuels is the use of biomass as an energy source. In this sense, the rural sector in Latin America has great potential due to its multiple biomass sources. For this reason, this study aims to analyze potential technologies related to the production of energy from biomass and its application in the Latin American rural sector. To achieve this, four key processes are analyzed. First is biomass conditioning through solar dryers. Next are the thermochemical processes that allow for their transformation into biofuels, for which the pyrolysis and the hydrothermal methods were selected due to the flexibility of the products obtained. Subsequently, cogeneration is studied to produce electrical and thermal energy from biomass or its derivatives. Finally, to close the CO 2 cycle, a balance of CO 2 fixation in a forest plantation is presented as an example of carbon accumulated in biomass. The literature systematic review allowed us to determine that the technologies mentioned in this work have different degrees of implementation in the Latin American rural sector. However, they have great potential to be applied on a large scale in the region, making it possible to adapt energy production to climate change and improve the life quality of its inhabitants.

Suggested Citation

  • Emerita Delgado-Plaza & Artemio Carrillo & Hugo Valdés & Norberto Odobez & Juan Peralta-Jaramillo & Daniela Jaramillo & José Reinoso-Tigre & Victor Nuñez & Juan Garcia & Carmina Reyes-Plascencia & Nes, 2022. "Key Processes for the Energy Use of Biomass in Rural Sectors of Latin America," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:169-:d:1011598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Messina, Diego, 2020. "Contribuciones determinadas a nivel nacional del sector eléctrico en América Latina y el Caribe: análisis de la transición hacia el uso sostenible de las fuentes energéticas," Documentos de Proyectos 46034, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    2. Ralf-Uwe Syrbe & Tran Thuc Han & Karsten Grunewald & Suili Xiao & Wolfgang Wende, 2022. "Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications," Land, MDPI, vol. 11(11), pages 1-11, October.
    3. Giada La Scalia & Luca Adelfio & Concetta Manuela La Fata & Rosa Micale, 2022. "Economic and Environmental Assessment of Biomass Power Plants in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    4. Kovalev, Andrey A. & Kovalev, Dmitriy A. & Zhuravleva, Elena A. & Katraeva, Inna V. & Panchenko, Vladimir & Fiore, Ugo & Litti, Yuri V., 2022. "Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode," Renewable Energy, Elsevier, vol. 181(C), pages 966-977.
    5. Raghu KC & Jarno Föhr & Arun Gyawali & Tapio Ranta, 2021. "Investment and Profitability of Community Heating Systems Using Bioenergy in Finland: Opportunities and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    6. Ivan Merino & Israel Herrera & Hugo Valdés, 2019. "Environmental Assessment of Energy Scenarios for a Low-Carbon Electrical Network in Chile," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    2. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    3. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    4. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Zeng, Shihong & Tanveer, Arifa & Fu, Xiaolan & Gu, Yuxiao & Irfan, Muhammad, 2022. "Modeling the influence of critical factors on the adoption of green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    7. Savelii Kukharets & Gennadii Golub & Marek Wrobel & Olena Sukmaniuk & Krzysztof Mudryk & Taras Hutsol & Algirdas Jasinskas & Marcin Jewiarz & Jonas Cesna & Iryna Horetska, 2022. "A Theoretical Model of the Gasification Rate of Biomass and Its Experimental Confirmation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    8. Flavio Scrucca & Grazia Barberio & Laura Cutaia & Caterina Rinaldi, 2023. "Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment," Energies, MDPI, vol. 17(1), pages 1-16, December.
    9. Julija Konstantinavičienė & Vlada Vitunskienė, 2023. "Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    10. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:169-:d:1011598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.