IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3009-d1107261.html
   My bibliography  Save this article

A Mini-Review of Current Activities and Future Trends in Agrivoltaics

Author

Listed:
  • Alexander V. Klokov

    (State Lab for Photon Energetics, Bauman Moscow State Technical University, 5-1, 2nd Baumanskaya Str., 105005 Moscow, Russia)

  • Egor Yu. Loktionov

    (State Lab for Photon Energetics, Bauman Moscow State Technical University, 5-1, 2nd Baumanskaya Str., 105005 Moscow, Russia)

  • Yuri V. Loktionov

    (State Lab for Photon Energetics, Bauman Moscow State Technical University, 5-1, 2nd Baumanskaya Str., 105005 Moscow, Russia)

  • Vladimir A. Panchenko

    (State Lab for Photon Energetics, Bauman Moscow State Technical University, 5-1, 2nd Baumanskaya Str., 105005 Moscow, Russia
    Department of Theoretical and Applied Mechanics, Russian University of Transport, 9b9, Obraztsova Str., 127994 Moscow, Russia
    Federal Scientific Agroengineering Centre “VIM”, 5, 1st Institutsky Dr., 109428 Moscow, Russia)

  • Elizaveta S. Sharaborova

    (State Lab for Photon Energetics, Bauman Moscow State Technical University, 5-1, 2nd Baumanskaya Str., 105005 Moscow, Russia
    Laboratoire des Sciences Cryosphériques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland)

Abstract

Agrivoltaics (Agri-PV, AV)—the joint use of land for the generation of agricultural products and energy—has recently been rapidly gaining popularity, as it can significantly increase income per unit of land area. In a broad sense, AV systems can include converters of solar energy, and also energy from any other local renewable source, including bioenergy. Current approaches to AV represent the evolutionary development of agroecology and integrated PV power supply to the grid, and can result in nearly doubled income per unit area. AV could provide a basis for a revolution in large-scale unmanned precision agriculture and smart farming which will be impossible without on-site power supply, reduction of chemical fertiliser and pesticides, and yield processing on site. These approaches could dramatically change the logistics and the added value production chain in agriculture, and so reduce its carbon footprint. Utilisation of decommissioned solar panels in AV could halve the cost of the technology and postpone the need for bulk PV recycling. Unlike the mainstream discourse on the topic, this review feature focuses on the possibilities for AV to become more strongly integrated into agriculture, which could also help in resolution of relevant legal disputes (considered as neither rather than both components).

Suggested Citation

  • Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3009-:d:1107261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    2. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    3. Xu, Zhitao & Elomri, Adel & Al-Ansari, Tareq & Kerbache, Laoucine & El Mekkawy, Tarek, 2022. "Decisions on design and planning of solar-assisted hydroponic farms under various subsidy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    5. Meagan Reasoner & Aritra Ghosh, 2022. "Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review," Challenges, MDPI, vol. 13(2), pages 1-14, September.
    6. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    8. Suprava Chakraborty & Devaraj Elangovan & Padma Lakshmi Govindarajan & Mohamed F. ELnaggar & Mohammed M. Alrashed & Salah Kamel, 2022. "A Comprehensive Review of Path Planning for Agricultural Ground Robots," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    9. Christophe Ballif & Laure-Emmanuelle Perret-Aebi & Sophie Lufkin & Emmanuel Rey, 2018. "Integrated thinking for photovoltaics in buildings," Nature Energy, Nature, vol. 3(6), pages 438-442, June.
    10. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    11. Linlin Wang & Xinrong Huang & Wanjian Li & Kangting Yan & Yifang Han & Yali Zhang & Lucjan Pawlowski & Yubin Lan, 2022. "Progress in Agricultural Unmanned Aerial Vehicles (UAVs) Applied in China and Prospects for Poland," Agriculture, MDPI, vol. 12(3), pages 1-43, March.
    12. Kovalev, Andrey A. & Kovalev, Dmitriy A. & Zhuravleva, Elena A. & Katraeva, Inna V. & Panchenko, Vladimir & Fiore, Ugo & Litti, Yuri V., 2022. "Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode," Renewable Energy, Elsevier, vol. 181(C), pages 966-977.
    13. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    14. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    15. Adilov, Nodir & Alexander, Peter J. & Cunningham, Brendan M., 2018. "An economic “Kessler Syndrome”: A dynamic model of earth orbit debris," Economics Letters, Elsevier, vol. 166(C), pages 79-82.
    16. Zhong, Yuan & Bustamante Roman, Mauricio & Zhong, Yingkui & Archer, Steve & Chen, Rui & Deitz, Lauren & Hochhalter, Dave & Balaze, Katie & Sperry, Miranda & Werner, Eric & Kirk, Dana & Liao, Wei, 2015. "Using anaerobic digestion of organic wastes to biochemically store solar thermal energy," Energy, Elsevier, vol. 83(C), pages 638-646.
    17. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    18. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    19. Jaiyoung Cho & Sung Min Park & A Reum Park & On Chan Lee & Geemoon Nam & In-Ho Ra, 2020. "Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture," Energies, MDPI, vol. 13(18), pages 1-18, September.
    20. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    21. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    22. Valda Rondelli & Bruno Franceschetti & Dario Mengoli, 2022. "A Review of Current and Historical Research Contributions to the Development of Ground Autonomous Vehicles for Agriculture," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    23. Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
    24. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    25. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    26. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    27. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    28. Jasleen Kaur Daljit Singh & Georgina Molinari & Jonathan Bui & Behdad Soltani & Gobinath Pillai Rajarathnam & Ali Abbas, 2021. "Life Cycle Assessment of Disposed and Recycled End-of-Life Photovoltaic Panels in Australia," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    29. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    30. Thi Thu Em Vo & Hyeyoung Ko & Jun-Ho Huh & Namje Park, 2021. "Overview of Solar Energy for Aquaculture: The Potential and Future Trends," Energies, MDPI, vol. 14(21), pages 1-20, October.
    31. Kim, Byungil & Kim, Changyoon & Han, SangUk & Bae, JuHyun & Jung, Jaehoon, 2020. "Is it a good time to develop commercial photovoltaic systems on farmland? An American-style option with crop price risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    32. Faisal Nawab & Ag Sufiyan Abd Hamid & Muhammad Arif & Tufial A. Khan & Amir Naveed & Muhammad Sadiq & Sahibzada Imad Ud din & Adnan Ibrahim, 2022. "Solar–Biogas Microgrid: A Strategy for the Sustainable Development of Rural Communities in Pakistan," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    33. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander V. Klokov & Alexander S. Tutunin & Elizaveta S. Sharaborova & Aleksei A. Korshunov & Egor Y. Loktionov, 2023. "Inverter Heat Pumps as a Variable Load for Off-Grid Solar-Powered Systems," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    2. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    3. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    5. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    7. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    8. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    9. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    10. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    11. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    12. Cossu, Marco & Tiloca, Maria Teresa & Cossu, Andrea & Deligios, Paola A. & Pala, Tore & Ledda, Luigi, 2023. "Increasing the agricultural sustainability of closed agrivoltaic systems with the integration of vertical farming: A case study on baby-leaf lettuce," Applied Energy, Elsevier, vol. 344(C).
    13. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    14. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    15. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    16. Al Mamun, Mohammad Abdullah & Garba, Ismail Ibrahim & Campbell, Shane & Dargusch, Paul & deVoil, Peter & Aziz, Ammar Abdul, 2023. "Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies," Agricultural Systems, Elsevier, vol. 208(C).
    17. Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
    18. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    19. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3009-:d:1107261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.