IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5208-d549880.html
   My bibliography  Save this article

Perceptions of Glacier Grafting: An Indigenous Technique of Water Conservation for Food Security in Gilgit-Baltistan, Pakistan

Author

Listed:
  • Ramsha Munir

    (Department of Development Studies, School of Social Sciences and Humanities (S3H), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Tehzeeb Bano

    (Department of Development Studies, School of Social Sciences and Humanities (S3H), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Iftikhar Hussain Adil

    (Department of Economics, School of Social Sciences and Humanities (S3H), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

  • Umer Khayyam

    (Department of Development Studies, School of Social Sciences and Humanities (S3H), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan)

Abstract

Climate change and disruption in the water cycle patterns are leading to water scarcity. This unsustained water provision is drastically affecting the areas of limited water resources. This research has studied the impacts of climate change on water availability and the localized indigenous technique of glacier grafting for sustained water provision. This adaptation strategy helps the water-stressed locality to conserve water for food security. For this reason, 160 self-administered questionnaires were deployed at the household level, and the primary data were analyzed through STATA Software for ordinal logit regression to estimate the results for both restricted and unrestricted models, against the three dependent variables of glacier grafting, glacier melt water and food security. It is found that glacier grafting ensures sustained water provision for irrigation. It increases fertile land and agricultural production to achieve food security. The income of the households from non-/agricultural products leads to afford a better standard of living. The extension of the glacier grafting strategy to curb climatic effects can help global societies to address the food insecurity issue for sustained living.

Suggested Citation

  • Ramsha Munir & Tehzeeb Bano & Iftikhar Hussain Adil & Umer Khayyam, 2021. "Perceptions of Glacier Grafting: An Indigenous Technique of Water Conservation for Food Security in Gilgit-Baltistan, Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5208-:d:549880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Brulle & Jason Carmichael & J. Jenkins, 2012. "Shifting public opinion on climate change: an empirical assessment of factors influencing concern over climate change in the U.S., 2002–2010," Climatic Change, Springer, vol. 114(2), pages 169-188, September.
    2. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    3. Alam, Khorshed, 2015. "Farmers’ adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh," Agricultural Water Management, Elsevier, vol. 148(C), pages 196-206.
    4. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    5. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    6. Sushenjit Bandyopadhyay & Limin Wang & Marcus Wijnen, 2011. "Improving Household Survey Instruments for Understanding Agricultural Household Adaptation to Climate Change : Water Stress and Variability," World Bank Publications - Reports 12764, The World Bank Group.
    7. Munir Ahmad & Umar Farooq, 2010. "The State of Food Security in Pakistan: Future Challenges and Coping Strategies," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 903-923.
    8. Taheripour, Farzad & Hertel, Thomas & Sahin, Sebnem, 2016. "Economic and land use impacts of improving water use efficiency in South Asia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236063, Agricultural and Applied Economics Association.
    9. Muhammad Afzal, 1996. "Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 35(4), pages 977-988.
    10. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    11. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    12. Mozumdar, Lavlu, 2012. "Agricultural productivity and food security in the developing world," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 35(1-2).
    13. Yu Liu & Xiaohong Hu & Qian Zhang & Mingbo Zheng, 2017. "Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    14. Lilyan E. Fulginiti & Richard K. Perrin, 1998. "Agricultural productivity in developing countries," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 45-51, September.
    15. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    16. Umer Khayyam, 2020. "Floods: impacts on livelihood, economic status and poverty in the north-west region of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1033-1056, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Rayan & Dietwald Gruehn & Umer Khayyam, 2022. "Frameworks for Urban Green Infrastructure (UGI) Indicators: Expert and Community Outlook toward Green Climate-Resilient Cities in Pakistan," Sustainability, MDPI, vol. 14(13), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    3. van Opstal, Jonna D. & Neale, Christopher M.U. & Hipps, Lawrence E., 2022. "Evaluating the adaptability of an irrigation district to seasonal water availability using a decade of remotely sensed evapotranspiration estimates," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    5. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    6. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    7. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    8. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    9. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    12. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    13. Md. Sazedur Rahman* & Md. Ashfikur Rahman, 2019. "Impacts of Climate Change on Crop Production in Bangladesh: A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 5(1), pages 6-14, 01-2019.
    14. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.
    15. Carracelas, G. & Hornbuckle, J. & Rosas, J. & Roel, A., 2019. "Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay," Agricultural Water Management, Elsevier, vol. 222(C), pages 161-172.
    16. Maneepitak, Sumana & Ullah, Hayat & Paothong, Kritkamol & Kachenchart, Boonlue & Datta, Avishek & Shrestha, Rajendra P., 2019. "Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the Central Plain of Thailand," Agricultural Water Management, Elsevier, vol. 211(C), pages 89-97.
    17. Zobeidi, Tahereh & Yaghoubi, Jafar & Yazdanpanah, Masoud, 2022. "Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC)," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    19. Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    20. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5208-:d:549880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.