IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5619-d275768.html
   My bibliography  Save this article

Response of Water Resources to Future Climate Change in a High-Latitude River Basin

Author

Listed:
  • Peng Qi

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China)

  • Guangxin Zhang

    (Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No.4888, Shengbei Street, Changchun 130102, China)

  • Yi Jun Xu

    (School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA)

  • Zhikun Xia

    (Institute of Hydraulic and Electric Power, Heilongjiang University, No.74, Xuefu Road, Harbin 150080, China)

  • Ming Wang

    (Institute of Meteorology in Heilongjiang Province, Harbin 150080, China)

Abstract

Global water resources are affected by climate change as never before. However, it is still unclear how water resources in high latitudes respond to climate change. In this study, the water resource data for 2021–2050 in the Naoli River Basin, a high-latitude basin in China, are calculated by using the SWAT-Modflow Model and future climate scenarios RCP4.5 and RCP8.5. The results show a decreasing trend. When compared to the present, future streamflow is predicted to decrease by 2.73 × 10 8 m 3 in 2021–2035 and by 1.51 × 10 8 m 3 in 2036–2050 in the RCP4.5 scenario, and by 8.16 × 10 8 m 3 in 2021–2035 and by 0.56 × 10 8 m 3 in 2036–2050 in the RCP8.5 scenario, respectively. Similarly, groundwater recharge is expected to decrease by −1.79 × 10 8 m 3 in 2021–2035 and −0.75 × 10 8 m 3 in 2036–2050 in the RCP 4.5 scenario, and by −0.62 × 10 8 m 3 in 2021–2035 and −0.12 × 10 8 m 3 in 2036–2050 in the RCP 8.5 scenario, respectively. The worst impact of climate change on water resources in the basin could be frequent occurrences of extremely wet and dry conditions. In the RCP 4.5 scenario, the largest annual streamflow is predicted to be almost 14 times that of the smallest one, while it is 18 times for the groundwater recharge. Meanwhile, in the RCP 8.5 scenario, inter-annual fluctuations are expected to be more severe. The difference is 17 times between the largest annual streamflow and the lowest annual one. Moreover, the value is 19 times between the largest and lowest groundwater recharge. This indicates a significant increase in conflict between water use and supply.

Suggested Citation

  • Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5619-:d:275768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    2. Petra Hellegers & Ekko van Ierland, 2003. "Policy Instruments for Groundwater Management in the Netherlands," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 163-172, September.
    3. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    4. Ling Zhang & Zhuotong Nan & Yi Xu & Shuo Li, 2016. "Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-25, June.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    7. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    8. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimzadeh, Aghaghia, 2017. "Political ecology of climate change: Shifting orchards and a temporary landscape of opportunity," World Development Perspectives, Elsevier, vol. 6(C), pages 25-31.
    2. Keshav Paudel & Peter Andersen, 2013. "Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya," Climatic Change, Springer, vol. 117(1), pages 149-162, March.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    6. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    7. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    8. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    9. Guillaume Bal & Etienne Rivot & Jean-Luc Baglinière & Jonathan White & Etienne Prévost, 2014. "A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    10. Fuentes, M.M.P.B. & Porter, W.P., 2013. "Using a microclimate model to evaluate impacts of climate change on sea turtles," Ecological Modelling, Elsevier, vol. 251(C), pages 150-157.
    11. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    12. Dan Song & Tangbin Huo & Zhao Zhang & Lei Cheng & Le Wang & Kun Ming & Hui Liu & Mengsha Li & Xue Du, 2022. "Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    13. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    14. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    15. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    16. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    17. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    18. Huicong An & Xiaorong Zhang & Jiaqi Ye, 2024. "Analysis of Vegetation Environmental Stress and the Lag Effect in Countries along the “Six Economic Corridors”," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    19. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    20. Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5619-:d:275768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.