IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3590-d523643.html
   My bibliography  Save this article

Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard ( Panthera uncia ) Habitat in Pakistan

Author

Listed:
  • Tauheed Ullah Khan

    (School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
    Department of Zoology, Kohat University, Kohat 26170, Pakistan)

  • Abdul Mannan

    (Department of Forestry, Karakoram International University, Gilgit-Baltistan 15100, Pakistan)

  • Charlotte E. Hacker

    (Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA)

  • Shahid Ahmad

    (Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050016, China)

  • Muhammad Amir Siddique

    (School of Landscape Architecture, Tianjin University, Tianjin 300384, China)

  • Barkat Ullah Khan

    (Ministry of Climate Change Islamabad, Islamabad 44000, Pakistan)

  • Emad Ud Din

    (College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China)

  • Minhao Chen

    (School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Chao Zhang

    (School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Moazzam Nizami

    (Department of Forestry and Wildlife Management, University of Haripur, Haripur 26100, Pakistan)

  • Xiaofeng Luan

    (School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China)

Abstract

Habitat degradation and species range contraction due to land use/land cover changes (LULCC) is a major threat to global biodiversity. The ever-growing human population has trespassed deep into the natural habitat of many species via the expansion of agricultural lands and infrastructural development. Carnivore species are particularly at risk, as they demand conserved and well-connected habitat with minimum to no anthropogenic disturbance. In Pakistan, the snow leopard ( Panthera uncia ) is found in three mountain ranges—the Himalayas, Hindukush, and Karakoram. Despite this being one of the harshest environments on the planet, a large population of humans reside here and exploit surrounding natural resources to meet their needs. Keeping in view this exponentially growing population and its potential impacts on at-risk species like the snow leopard, we used geographic information systems (GIS) and remote sensing with the aim of identifying and quantifying LULCC across snow leopard range in Pakistan for the years 2000, 2010, and 2020. A massive expansion of 1804.13 km 2 (163%) was observed in the built-up area during the study period. Similarly, an increase of 3177.74 km 2 (153%) was observed in agricultural land. Barren mountain land increased by 12,368.39 km 2 (28%) while forest land decreased by 2478.43 km 2 (28%) and area with snow cover decreased by 14,799.83 km 2 (52%). Drivers of these large-scale changes are likely the expanding human population and climate change. The overall quality and quantity of snow leopard habitat in Pakistan has drastically changed in the last 20 years and could be compromised. Swift and direct conservation actions to monitor LULCC are recommended to reduce any associated negative impacts on species preservation efforts. In the future, a series of extensive field surveys and studies should be carried out to monitor key drivers of LULCC across the observed area.

Suggested Citation

  • Tauheed Ullah Khan & Abdul Mannan & Charlotte E. Hacker & Shahid Ahmad & Muhammad Amir Siddique & Barkat Ullah Khan & Emad Ud Din & Minhao Chen & Chao Zhang & Moazzam Nizami & Xiaofeng Luan, 2021. "Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard ( Panthera uncia ) Habitat in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3590-:d:523643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javaid Laghari, 2013. "Climate change: Melting glaciers bring energy uncertainty," Nature, Nature, vol. 502(7473), pages 617-618, October.
    2. Kirsten L. Findell & Alexis Berg & Pierre Gentine & John P. Krasting & Benjamin R. Lintner & Sergey Malyshev & Joseph A. Santanello & Elena Shevliakova, 2017. "The impact of anthropogenic land use and land cover change on regional climate extremes," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Jianguo Liu & Gretchen C. Daily & Paul R. Ehrlich & Gary W. Luck, 2003. "Effects of household dynamics on resource consumption and biodiversity," Nature, Nature, vol. 421(6922), pages 530-533, January.
    4. Fisher, Brendan & Christopher, Treg, 2007. "Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots," Ecological Economics, Elsevier, vol. 62(1), pages 93-101, April.
    5. Andreas Kääb & Etienne Berthier & Christopher Nuth & Julie Gardelle & Yves Arnaud, 2012. "Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas," Nature, Nature, vol. 488(7412), pages 495-498, August.
    6. Eufemia Tarantino & Antonio Novelli & Mariella Aquilino & Benedetto Figorito & Umberto Fratino, 2015. "Comparing the MLC and JavaNNS Approaches in Classifying Multi-Temporal LANDSAT Satellite Imagery over an Ephemeral River Area," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 6(4), pages 83-102, October.
    7. Dominik Kaim & Elżbieta Ziółkowska & Marcin Szwagrzyk & Bronwyn Price & Jacek Kozak, 2019. "Impact of Future Land Use Change on Large Carnivores Connectivity in the Polish Carpathians," Land, MDPI, vol. 8(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdul Mannan & Fan Yongxiang & Tauheed Ullah Khan & Syed Moazzam Nizami & Beckline Mukete & Adnan Ahmad & Ummay Amara & Jincheng Liu & Mamoona Wali Muhammad, 2021. "Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    2. Muhammad Amir Siddique & Fan Boqing & Liu Dongyun, 2023. "Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    3. Nadeem Ullah & Muhammad Amir Siddique & Mengyue Ding & Sara Grigoryan & Irshad Ahmad Khan & Zhihao Kang & Shangen Tsou & Tianlin Zhang & Yike Hu & Yazhuo Zhang, 2023. "The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China," IJERPH, MDPI, vol. 20(3), pages 1-15, February.
    4. Motuma Shiferaw Regasa & Michael Nones, 2022. "Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin," Land, MDPI, vol. 11(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kramer, Daniel Boyd & Urquhart, Gerald & Schmitt, Kristen, 2009. "Globalization and the connection of remote communities: A review of household effects and their biodiversity implications," Ecological Economics, Elsevier, vol. 68(12), pages 2897-2909, October.
    2. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    3. Hyeseon Choi & Nash Jett DG. Reyes & Minsu Jeon & Lee-Hyung Kim, 2021. "Constructed Wetlands in South Korea: Current Status and Performance Assessment," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    4. Vincent Sennes & Jacques Breillat & Francis Ribeyre & Sandrine Gombert, 2009. "Local policies for reducing the ecological impact of households: the case study of a suburban area in France," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(5), pages 1031-1049, October.
    5. Xue, Jin, 2014. "Is eco-village/urban village the future of a degrowth society? An urban planner's perspective," Ecological Economics, Elsevier, vol. 105(C), pages 130-138.
    6. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    7. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    8. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    9. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    10. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    11. Catherine Potvin & Petra Tschakert & Frédéric Lebel & Kate Kirby & Hector Barrios & Judith Bocariza & Jaime Caisamo & Leonel Caisamo & Charianito Cansari & Juan Casamá & Maribel Casamá & Laura Chamorr, 2007. "A participatory approach to the establishment of a baseline scenario for a reforestation Clean Development Mechanism project," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(8), pages 1341-1362, October.
    12. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    13. Wood, Apanie L. & Butler, James R.A. & Sheaves, Marcus & Wani, Jacob, 2013. "Sport fisheries: Opportunities and challenges for diversifying coastal livelihoods in the Pacific," Marine Policy, Elsevier, vol. 42(C), pages 305-314.
    14. Overman, Henry G. & Puga, Diego & Turner, Matthew A., 2008. "Decomposing the growth in residential land in the United States," Regional Science and Urban Economics, Elsevier, vol. 38(5), pages 487-497, September.
    15. Michelle Lim, 2016. "Governance criteria for effective transboundary biodiversity conservation," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(6), pages 797-813, December.
    16. Shang Xu & H. Allen Klaiber & Daniela A. Miteva, 2023. "Impacts of forest conservation on local agricultural labor supply: Evidence from the Indonesian forest moratorium," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 940-965, May.
    17. Auliz-Ortiz, Daniel Martín & Arroyo-Rodríguez, Víctor & Mendoza, Eduardo & Martínez-Ramos, Miguel, 2023. "Are there trade-offs between conservation and development caused by Mexican protected areas?," Land Use Policy, Elsevier, vol. 127(C).
    18. Niggemann, Marc & Jetzkowitz, Jens & Brunzel, Stefan & Wichmann, Matthias C. & Bialozyt, Ronald, 2009. "Distribution patterns of plants explained by human movement behaviour," Ecological Modelling, Elsevier, vol. 220(9), pages 1339-1346.
    19. Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
    20. Liliana Pacheco & Sara Fraixedas & Álvaro Fernández-Llamazares & Neus Estela & Robert Mominee & Ferran Guallar, 2012. "Perspectives on Sustainable Resource Conservation in Community Nature Reserves: A Case Study from Senegal," Sustainability, MDPI, vol. 4(11), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3590-:d:523643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.