IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2773-d510514.html
   My bibliography  Save this article

Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas

Author

Listed:
  • Sergejus Lebedevas

    (Marine Engineering Department, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, 91225 Klaipėda, Lithuania)

  • Tomas Čepaitis

    (Marine Engineering Department, Faculty of Marine Technologies and Natural Sciences, Klaipeda University, 91225 Klaipėda, Lithuania)

Abstract

The publication research task is related to one of the solution aspects in reference to decarbonization of transport by transferring the operation of diesel engines to natural gas. The results of converted diesel engines into operation with dual-fuel (D-NG) without significant constructive modifications are focused on forecasting the energy efficiency parameters of in-service engine models and evaluation of the reserves improvement. This paper presents energy efficiency parameters and characteristics of the combustion cycle methodological optimization of high-speed 79.5/95.5 mm diesel engine with a conventional fuel injection system. Interrelations between the indicated efficiency ( η i ), combustion cycle performance parameters (excess air ratio (α), compression ratio (ε), degree of pressure increase in the cylinder (λ), maximum cycle pressure ( p max ), air pressure ( p k ), air temperature ( T k ) after compression, etc.), and heat release characteristics were determined and researched. Directions of the optimization when the engines were operating in a wide range of load ( p mi ) modes were also obtained: the low energy efficiency in the low-load mode were due to reduced heat release dynamics (combustion time increased up to 200° CA). The main influencing factors for η i were the pilot-injection portion phase ( φ inj ) and α, optimization of ε was inefficient. To avoid exceeding the permissible limits of reliability for p max , the realized reserve of η i increase was estimated as 10%. Methodological tools for the practical application of parametric analysis to the conversion of diesel to dual-fuel operation have been developed and adapted in the form of a numerical modeling algorithm, which was presented in nomogram form. For improvement of initial energy parameters for a specific engine models heat release characteristics identification, accurate methods must be used. The proposed methodology is seen as a theoretical tool for a dual-fuel conversion models for in-service engines and has benefit of a practical use of a fast application in the industrial field.

Suggested Citation

  • Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2773-:d:510514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    2. Abdelaal, Mohsen M. & Rabee, Basem A. & Hegab, Abdelrahman H., 2013. "Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency," Energy, Elsevier, vol. 61(C), pages 612-620.
    3. Singh, R.N. & Singh, S.P. & Pathak, B.S., 2007. "Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode," Renewable Energy, Elsevier, vol. 32(9), pages 1565-1580.
    4. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    5. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    6. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    7. Hosmath, R.S. & Banapurmath, N.R. & Khandal, S.V. & Gaitonde, V.N. & Basavarajappa, Y.H. & Yaliwal, V.S., 2016. "Effect of compression ratio, CNG flow rate and injection timing on the performance of dual fuel engine operated on honge oil methyl ester (HOME) and compressed natural gas (CNG)," Renewable Energy, Elsevier, vol. 93(C), pages 579-590.
    8. Zhang, Qiang & Li, Menghan & Shao, Sidong, 2015. "Combustion process and emissions of a heavy-duty engine fueled with directly injected natural gas and pilot diesel," Applied Energy, Elsevier, vol. 157(C), pages 217-228.
    9. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    10. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2008. "Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas," Renewable Energy, Elsevier, vol. 33(9), pages 2077-2083.
    11. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergejus Lebedevas & Laurencas Raslavičius & Martynas Drazdauskas, 2023. "Comprehensive Correlation for the Prediction of the Heat Release Characteristics of Diesel/CNG Mixtures in a Single-Zone Combustion Model," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    3. Weronika Gracz & Damian Marcinkowski & Wojciech Golimowski & Filip Szwajca & Maria Strzelczyk & Jacek Wasilewski & Paweł Krzaczek, 2021. "Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels," Energies, MDPI, vol. 14(12), pages 1-19, June.
    4. Slavin Viktor & Shuba Yevheniy & Korpach Anatolii & Gutarevych Serhiy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.
    5. Agnieszka Dudziak & Jacek Caban & Ondrej Stopka & Monika Stoma & Marie Sejkorová & Mária Stopková, 2023. "Vehicle Market Analysis of Drivers’ Preferences in Terms of the Propulsion Systems: The Czech Case Study," Energies, MDPI, vol. 16(5), pages 1-20, March.
    6. Ozen Gunal & Mustafa Akpinar & Kevser Ovaz Akpinar, 2022. "Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms," Energies, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
    2. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    3. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    4. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    5. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    6. Li, Menghan & Wu, Hanming & Zhang, Tiechen & Shen, Boxiong & Zhang, Qiang & Li, Zhenguo, 2020. "A comprehensive review of pilot ignited high pressure direct injection natural gas engines: Factors affecting combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    8. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    9. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    10. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    11. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    13. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    14. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    15. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    16. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    17. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    18. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    19. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2773-:d:510514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.