IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5069-d860514.html
   My bibliography  Save this article

Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms

Author

Listed:
  • Ozen Gunal

    (Computer Programming Department, Manisa Celal Bayar University, Manisa 45140, Turkey)

  • Mustafa Akpinar

    (Software Engineering Department, Sakarya University, Serdivan 54050, Turkey
    Computer Science and Engineering Department, Amity University Dubai, Dubai 345019, United Arab Emirates)

  • Kevser Ovaz Akpinar

    (Computer Engineering Department, Sakarya University, Serdivan 54050, Turkey
    Computing Security Department, Rochester Institute of Technology Dubai, Dubai 341055, United Arab Emirates)

Abstract

Heat transfer is one of the most fundamental engineering subjects and is found in every moment of life. Heat transfer problems, such as heating and cooling, where the transfer of heat between regions is calculated, are problems that can give exact solutions with parametric equations, many of which were obtained by solving differential equations in the past. Today, the fact that heat transfer problems have a more complex structure has led to the emergence of multivariate models, and problems that are very difficult to solve with differential equations have emerged. Optimization techniques, which are also the subject of computer science, are frequently used to solve complex problems. In this study, laminar thermal boundary layers in flow over a flat plate, a sub-problem of heat transfer, is solved with recent metaheuristic algorithms. Teaching learning-based optimization (TLBO), sine cosine optimization (SCO), gray wolf optimization (GWO), whale optimization (WO), salp swarm optimization (SSO), and Harris hawk optimization (HHO) algorithms are used in the study. In the optimization problem, the laminar boundary layer thickness, heat flow, and distance from the leading edge are determined. These three models’ minimum, maximum, and target values are found under the specified design variables and constraints. In the study, 540 optimization models are run, and it is seen that HHO is the most suitable optimization technique for heat transfer problems. Additionally, SSO and WO algorithms gave results close to HHO. Other algorithms also set model targets with an average of less than 0.07% and acceptable error rates. In addition, the average problem solution time of all optimization algorithms and all models was 0.9 s. To conclude, the recent metaheuristic algorithms are found to be powerful and fast in solving heat transfer problems.

Suggested Citation

  • Ozen Gunal & Mustafa Akpinar & Kevser Ovaz Akpinar, 2022. "Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms," Energies, MDPI, vol. 15(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5069-:d:860514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rao, R.V. & More, K.C., 2015. "Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm," Energy, Elsevier, vol. 80(C), pages 535-544.
    2. Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi, 2021. "Thermal and Flow Simulation of Concentric Annular Heat Pipe with Symmetric or Asymmetric Condenser," Energies, MDPI, vol. 14(11), pages 1-23, June.
    3. Hui Xiao & Zhimin Dong & Rui Long & Kun Yang & Fang Yuan, 2019. "A Study on the Mechanism of Convective Heat Transfer Enhancement Based on Heat Convection Velocity Analysis," Energies, MDPI, vol. 12(21), pages 1-22, November.
    4. Ping-Kui Wang & Yu-Jen Liu & Jun-Tinn Lin & Zen-Wei Wang & Hsu-Chih Cheng & Bo-Xuan Huang & Gary W. Chang, 2022. "Harris Hawks Optimization-Based Algorithm for STATCOM Voltage Regulation of Offshore Wind Farm Grid," Energies, MDPI, vol. 15(9), pages 1-24, April.
    5. Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    6. Mohammad Ghalambaz & Seyed Abdollah Mansouri Mehryan & Masoud Mozaffari & Obai Younis & Aritra Ghosh, 2021. "The Effect of Variable-Length Fins and Different High Thermal Conductivity Nanoparticles in the Performance of the Energy Storage Unit Containing Bio-Based Phase Change Substance," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    7. Li, Y. F. & Chow, W. K., 2005. "Optimum insulation-thickness for thermal and freezing protection," Applied Energy, Elsevier, vol. 80(1), pages 23-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    2. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    3. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    4. Radhi, H., 2009. "Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?," Energy, Elsevier, vol. 34(2), pages 205-215.
    5. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and arid climate: A multiple-case study analysis," Renewable Energy, Elsevier, vol. 62(C), pages 369-378.
    6. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    7. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.
    8. Ali Shubbar & Mohammed Nasr & Mayadah Falah & Zainab Al-Khafaji, 2021. "Towards Net Zero Carbon Economy: Improving the Sustainability of Existing Industrial Infrastructures in the UK," Energies, MDPI, vol. 14(18), pages 1-11, September.
    9. Sergejus Lebedevas & Laurencas Raslavičius & Martynas Drazdauskas, 2023. "Comprehensive Correlation for the Prediction of the Heat Release Characteristics of Diesel/CNG Mixtures in a Single-Zone Combustion Model," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    11. Daşdemir, Ali & Ertürk, Mustafa & Keçebaş, Ali & Demircan, Cihan, 2017. "Effects of air gap on insulation thickness and life cycle costs for different pipe diameters in pipeline," Energy, Elsevier, vol. 122(C), pages 492-504.
    12. Lixi Zhang & Zhengyang Zhang & Hui Yin, 2022. "Comprehensive Study on Melting Process of Phase Change Material by Using Paraffin Coupled Finned Heating Plate for Heat Transfer Enhancement," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    13. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    14. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    15. Slavin Viktor & Shuba Yevheniy & Korpach Anatolii & Gutarevych Serhiy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.
    16. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    17. Yildiz, Abdullah & Ali Ersöz, Mustafa, 2015. "Determination of the economical optimum insulation thickness for VRF (variable refrigerant flow) systems," Energy, Elsevier, vol. 89(C), pages 835-844.
    18. Yildiz, Abdullah & Ersöz, Mustafa Ali, 2016. "The effect of wind speed on the economical optimum insulation thickness for HVAC duct applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1289-1300.
    19. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    20. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5069-:d:860514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.