IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3333-d569700.html
   My bibliography  Save this article

Thermal and Flow Simulation of Concentric Annular Heat Pipe with Symmetric or Asymmetric Condenser

Author

Listed:
  • Eui-Hyeok Song

    (School of Mechanical Engineering, Chungbuk National University, 1 ChungDae-ro, SeoWon-gu, Cheongju 28644, Chungbuk, Korea)

  • Kye-Bock Lee

    (School of Mechanical Engineering, Chungbuk National University, 1 ChungDae-ro, SeoWon-gu, Cheongju 28644, Chungbuk, Korea
    Kye-Bock Lee equally contributed to this work as a co-corresponding author.)

  • Seok-Ho Rhi

    (School of Mechanical Engineering, Chungbuk National University, 1 ChungDae-ro, SeoWon-gu, Cheongju 28644, Chungbuk, Korea)

Abstract

The current research work describes the flow and thermal analysis inside the circular flow region of an annular heat pipe with a working fluid, using computational fluid dynamics (CFD) simulation. A two-phase flow involving simultaneous evaporation and condensation phenomena in a concentric annular heat pipe (CAHP) is modeled. To simulate the interaction between these phases, the volume of fluid (VOF) technique is used. The temperature profile predicted using computational fluid dynamics (CFD) in the CAHP was compared with previously obtained experimental results. Two-dimensional and three-dimensional simulations were carried out, in order to verify the usefulness of 3D modeling. Our goal was to compute the flow characteristics, temperature distribution, and velocity field inside the CAHP. Depending on the shape of the annular heat pipe, the thermal performance can be improved through the optimal design of components, such as the inner width of the annular heat pipe, the location of the condensation part, and the amount of working fluid. To evaluate the thermal performance of a CAHP, a numerical simulation of a 50 mm long stainless steel CAHP (1.1 and 1.3 in diameter ratio and fixed inner tube diameter (78 mm)) was done, which was identical to the experimental system. In the simulated analysis results, similar results to the experiment were obtained, and it was confirmed that the heat dissipation was higher than that of the existing conventional heat pipe, where the heat transfer performance was improved when the asymmetric area was cooled. Moreover, the simulation results were validated using the experimental results. The 3-D simulation shows good agreement with the experimental results to a reasonable degree.

Suggested Citation

  • Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi, 2021. "Thermal and Flow Simulation of Concentric Annular Heat Pipe with Symmetric or Asymmetric Condenser," Energies, MDPI, vol. 14(11), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3333-:d:569700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhongchao Zhao & Yong Zhang & Yanrui Zhang & Yimeng Zhou & Hao Hu, 2018. "Numerical Study on the Transient Thermal Performance of a Two-Phase Closed Thermosyphon," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Eui-Hyeok Song & Kye-Bock Lee & Seok-Ho Rhi & Kibum Kim, 2020. "Thermal and Flow Characteristics in a Concentric Annular Heat Pipe Heat Sink," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Zhang, Xiongwen & Kong, Xin & Li, Guojun & Li, Jun, 2014. "Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions," Energy, Elsevier, vol. 64(C), pages 1092-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Filip Mikołajczyk, 2021. "Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers," Energies, MDPI, vol. 14(22), pages 1-38, November.
    2. Ozen Gunal & Mustafa Akpinar & Kevser Ovaz Akpinar, 2022. "Optimization of Laminar Boundary Layers in Flow over a Flat Plate Using Recent Metaheuristic Algorithms," Energies, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    2. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    3. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    4. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    5. Wang, Hongqiang & Li, Sha & Li, Dan & Chen, Zhixin & Liu, Hua Kun & Guo, Zaiping, 2014. "TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries," Energy, Elsevier, vol. 75(C), pages 597-602.
    6. Rafal Andrzejczyk, 2018. "Experimental Investigation of the Thermal Performance of a Wickless Heat Pipe Operating with Different Fluids: Water, Ethanol, and SES36. Analysis of Influences of Instability Processes at Working Ope," Energies, MDPI, vol. 12(1), pages 1-28, December.
    7. Wang, Anci & Yin, Xiang & Xin, Zhicheng & Cao, Feng & Wu, Zan & Sundén, Bengt & Xiao, Di, 2023. "Performance optimization of electric vehicle battery thermal management based on the transcritical CO2 system," Energy, Elsevier, vol. 266(C).
    8. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    9. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    10. Pawel Znaczko & Emilian Szczepanski & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Jacek Kukulski, 2021. "Experimental Diagnosis of the Heat Pipe Solar Collector Malfunction. A Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.
    11. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Jiang, Zhibin & Chen, Ling & Zhang, Wenguang & Chen, Shiyu & Jian, Xiying & Liu, Xiang & Chen, Hongyu & Guo, Chunlei & Li, Weishan, 2021. "Sandwich-like NOCC@S8/rGO composite as cathode for high energy lithium-sulfur batteries," Energy, Elsevier, vol. 220(C).
    13. Li, Wenhong & Song, Guolin & Li, Shuhua & Yao, Youwei & Tang, Guoyi, 2014. "Preparation and characterization of novel MicroPCMs (microencapsulated phase-change materials) with hybrid shells via the polymerization of two alkoxy silanes," Energy, Elsevier, vol. 70(C), pages 298-306.
    14. Kaveh Sadeghi & Mostafa Kahani & Mohammad Hossein Ahmadi & Mohammad Zamen, 2022. "CFD Modelling and Visual Analysis of Heat Transfer and Flow Pattern in a Vertical Two-Phase Closed Thermosyphon for Moderate-Temperature Application," Energies, MDPI, vol. 15(23), pages 1-22, November.
    15. Łukasz Adrian & Szymon Szufa & Piotr Piersa & Piotr Kuryło & Filip Mikołajczyk & Krystian Kurowski & Sławomir Pochwała & Andrzej Obraniak & Jacek Stelmach & Grzegorz Wielgosiński & Justyna Czerwińska , 2021. "Analysis and Evaluation of Heat Pipe Efficiency to Reduce Low Emission with the Use of Working Agents R134A, R404A and R407C, R410A," Energies, MDPI, vol. 14(7), pages 1-29, March.
    16. Zhang, Sijie & Zhao, Rui & Liu, Jie & Gu, Junjie, 2014. "Investigation on a hydrogel based passive thermal management system for lithium ion batteries," Energy, Elsevier, vol. 68(C), pages 854-861.
    17. Liang, Jialin & Gan, Yunhua & Tan, Meixian & Li, Yong, 2020. "Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module," Energy, Elsevier, vol. 209(C).
    18. Bai, Hongwei & Liu, Zhaoyang & Sun, Darren Delai & Chan, Siew Hwa, 2014. "Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries," Energy, Elsevier, vol. 76(C), pages 607-613.
    19. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    20. Grzegorz Czerwiński & Jerzy Wołoszyn, 2021. "Numerical Study of a Cooling System Using Phase Change of a Refrigerant in a Thermosyphon," Energies, MDPI, vol. 14(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3333-:d:569700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.