IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3356-d570628.html
   My bibliography  Save this article

Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines

Author

Listed:
  • Krzysztof Biernat

    (Łukasiewicz Research Network—Automotive Industry Institute, 55 Jagiellońska Str., 03-301 Warsaw, Poland)

  • Izabela Samson-Bręk

    (Department of Environmental Chemistry and Risk Assessment, Institute of Environmental Protection—National Research Institute, 55/11D Krucza Str., 00-548 Warsaw, Poland)

  • Zdzisław Chłopek

    (Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, Narbutta 84, 02-524 Warsaw, Poland)

  • Marlena Owczuk

    (Łukasiewicz Research Network—Automotive Industry Institute, 55 Jagiellońska Str., 03-301 Warsaw, Poland)

  • Anna Matuszewska

    (Łukasiewicz Research Network—Automotive Industry Institute, 55 Jagiellońska Str., 03-301 Warsaw, Poland)

Abstract

This research paper studied the environmental impact of using methane fuels for supplying internal combustion engines. Methane fuel types and the methods of their use in internal combustion engines were systematized. The knowledge regarding the environmental impact of using methane fuels for supplying internal combustion engines was analyzed. The authors studied the properties of various internal combustion engines used for different applications (specialized engines of power generators—Liebherr G9512 and MAN E3262 LE212, powered by biogas, engine for road and off-road vehicles—Cummins 6C8.3, in self-ignition, original version powered by diesel fuel, and its modified version—a spark-ignition engine powered by methane fuel) under various operating conditions in approval tests. The sensitivity of the engine properties, especially pollutant emissions, to its operating states were studied. In the case of a Cummins 6C8.3 modified engine, a significant reduction in the pollutant emission owing to the use of methane fuel, relative to the original self-ignition engine, was found. The emission of carbon oxide decreased by approximately 30%, hydrocarbons by approximately 70% and nitrogen oxide by approximately 50%, as well as a particulate matter emission was also eliminated. Specific brake emission of carbon oxide is the most sensitive to the operating states of the engine: 0.324 for a self-ignition engine and 0.264 for a spark-ignition engine, with the least sensitive being specific brake emission of nitrogen oxide: 0.121 for a self-ignition engine and 0.097 for a spark-ignition engine. The specific brake emission of carbon monoxide and hydrocarbons for stationary engines was higher in comparison with both versions of Cummins 6C8.3 engine. However, the emission of nitrogen oxide for stationary engines was lower than for Cummins engines.

Suggested Citation

  • Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3356-:d:570628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2015. "An experimental study of the performance, combustion and emission characteristics of a CI engine under dual fuel mode using CNG and oxygenated pilot fuel blends," Energy, Elsevier, vol. 86(C), pages 560-573.
    2. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
    3. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    4. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    5. Senthilraja, R. & Sivakumar, V. & Thirugnanasambandham, K. & Nedunchezhian, N., 2016. "Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol – Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel," Energy, Elsevier, vol. 112(C), pages 899-907.
    6. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    7. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    8. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    9. Lee, Tsung-Han & Huang, Sheng-Rung & Chen, Chiun-Hsun, 2013. "The experimental study on biogas power generation enhanced by using waste heat to preheat inlet gases," Renewable Energy, Elsevier, vol. 50(C), pages 342-347.
    10. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    11. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu & Dinu Fuiorescu, 2020. "Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    12. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
    13. Puricelli, S. & Cardellini, G. & Casadei, S. & Faedo, D. & van den Oever, A.E.M. & Grosso, M., 2021. "A review on biofuels for light-duty vehicles in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Yusaf, Talal F. & Buttsworth, D.R. & Saleh, Khalid H. & Yousif, B.F., 2010. "CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network," Applied Energy, Elsevier, vol. 87(5), pages 1661-1669, May.
    15. Carlucci, A.P. & de Risi, A. & Laforgia, D. & Naccarato, F., 2008. "Experimental investigation and combustion analysis of a direct injection dual-fuel diesel–natural gas engine," Energy, Elsevier, vol. 33(2), pages 256-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Bartkowiak & Piotr Bartkowiak & Grzegorz Kinelski, 2022. "Efficiency of Shaping the Value Chain in the Area of the Use of Raw Materials in Agro-Biorefinery in Sustainable Development," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. George Mallouppas & Elias Ar. Yfantis & Constantina Ioannou & Andreas Paradeisiotis & Angelos Ktoris, 2023. "Application of Biogas and Biomethane as Maritime Fuels: A Review of Research, Technology Development, Innovation Proposals, and Market Potentials," Energies, MDPI, vol. 16(4), pages 1-25, February.
    3. Kirsi Spoof-Tuomi & Hans Arvidsson & Olav Nilsson & Seppo Niemi, 2022. "Real-Driving Emissions of an Aging Biogas-Fueled City Bus," Clean Technol., MDPI, vol. 4(4), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    2. Senthilraja, R. & Sivakumar, V. & Thirugnanasambandham, K. & Nedunchezhian, N., 2016. "Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol – Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel," Energy, Elsevier, vol. 112(C), pages 899-907.
    3. Park, Jungsoo & Lee, Kyo Seung & Kim, Min Su & Jung, Dohoy, 2014. "Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization," Energy, Elsevier, vol. 70(C), pages 278-287.
    4. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    5. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    6. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    7. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    8. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
    9. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    10. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    11. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    12. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    13. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    14. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    15. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    16. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    17. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    18. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    19. Ramos da Costa, Yoge Jerônimo & Barbosa de Lima, Antonio Gilson & Bezerra Filho, Celso Rosendo & de Araujo Lima, Laerte, 2012. "Energetic and exergetic analyses of a dual-fuel diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4651-4660.
    20. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2015. "An experimental study of the performance, combustion and emission characteristics of a CI engine under dual fuel mode using CNG and oxygenated pilot fuel blends," Energy, Elsevier, vol. 86(C), pages 560-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3356-:d:570628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.