IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2532-d506376.html
   My bibliography  Save this article

Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars

Author

Listed:
  • Sehyeon Kim

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Markus Holz

    (Department of Economics Program Director Logistic & Air Traffic Management, Anhalt of University of Applied Science, 06406 Bernburg, Germany)

  • Soojin Park

    (KEPCO International Nuclear Graduate School, Ulsan 45014, Korea)

  • Yongbeum Yoon

    (KEPCO International Nuclear Graduate School, Ulsan 45014, Korea)

  • Eunchel Cho

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Junsin Yi

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

Twenty-three percent of carbon emissions come from fossil fuels used in transportation. Electric vehicles are suggested as alternatives to fossil-fueled vehicles. Cars having vehicle integrated photovoltaics (VIPV) on the roof have recently been launched, aiming to increase fuel efficiency and increase maximum mileage by supplying electricity to the vehicle when needed. VIPV needs to be light in terms of efficiency. The use of polymeric materials, made of low-iron tempered glass on the front that contributes significantly to the module’s weight, is required instead. The use of a sandwich structure with polymer material achieves nine times stiffer rigidity than an aluminum sheet of the same weight. It can be used with a weight that is half that of glass through the lightweight and light-transmitting polymer material on the front side. The concentrator photovoltaic module structure is used to compensate for various angles of incidence on a moving car, and it is advantageous because it is easy to apply and has a low weight owing to its excellent flexibility. It is possible to reduce the weight from 20 kg to less than 10 kg by limiting the use of glass.

Suggested Citation

  • Sehyeon Kim & Markus Holz & Soojin Park & Yongbeum Yoon & Eunchel Cho & Junsin Yi, 2021. "Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars," Sustainability, MDPI, vol. 13(5), pages 1-7, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2532-:d:506376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    2. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    3. Christensen, Linda & Klauenberg, Jens & Kveiborg, Ole & Rudolph, Christian, 2017. "Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases," Research in Transportation Economics, Elsevier, vol. 64(C), pages 48-60.
    4. Gorter, T. & Reinders, A.H.M.E., 2012. "A comparison of 15 polymers for application in photovoltaic modules in PV-powered boats," Applied Energy, Elsevier, vol. 92(C), pages 286-297.
    5. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    6. Lee, Yerim & Hur, Jin, 2019. "A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion," Renewable Energy, Elsevier, vol. 144(C), pages 172-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    2. Agnieszka Skala, 2022. "Sustainable Transport and Mobility—Oriented Innovative Startups and Business Models," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    3. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    4. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    4. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    5. Hur, Jin, 2021. "Potential capacity factor estimates of wind generating resources for transmission planning," Renewable Energy, Elsevier, vol. 179(C), pages 1742-1750.
    6. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    7. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    8. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    9. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    10. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    11. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    12. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    13. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    14. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    15. I-Hua Wei & Fu-Ming Wang & Chung-Hao Chang, 2022. "A Feasibility Study of Developing eLCV Shared Architecture in Taiwan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    16. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    17. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    19. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    20. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2532-:d:506376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.