IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12736-d681586.html
   My bibliography  Save this article

Are We Satisfying the Right Conditions for the Mobility Transition? A Review and Evaluation of the Dutch Urban Mobility Policies

Author

Listed:
  • Mylène van der Koogh

    (Energy & Industry Group, Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands
    Energy & Innovation Group, Urban Technology, Faculty of Technology, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands)

  • Emile Chappin

    (Energy & Industry Group, Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands)

  • Renée Heller

    (Energy & Innovation Group, Urban Technology, Faculty of Technology, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands)

  • Zofia Lukszo

    (Energy & Industry Group, Engineering Systems and Services, Faculty of Technology, Policy and Management, Delft University of Technology, 2628 BX Delft, The Netherlands)

Abstract

Global climate agreements call for action and an integrated perspective on mobility, energy and overall consumption. Municipalities in dense, urban areas are challenged with facilitating this transition with limited space and energy resources, and with future uncertainties. One important aspect of the transition is the adoption of electric vehicles, which includes the adequate design of charging infrastructure. Another important goal is a modal shift in transportation. This study investigated over 80 urban mobility policy measures that are in the policy roadmap of two of the largest municipalities of the Netherlands. This analysis consists of an inventory of policy measures, an evaluation of their environmental effects and conceptualizations of the policy objectives and conditions within the mobility transitions. The findings reveal that the two municipalities have similarities in means, there is still little anticipation of future technology and policy conditions could be further satisfied by introducing tailored measures for specific user groups.

Suggested Citation

  • Mylène van der Koogh & Emile Chappin & Renée Heller & Zofia Lukszo, 2021. "Are We Satisfying the Right Conditions for the Mobility Transition? A Review and Evaluation of the Dutch Urban Mobility Policies," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12736-:d:681586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T E van der Lei & B Enserink & W A H Thissen & G Bekebrede, 2011. "How to use a systems diagram to analyse and structure complex problems for policy issue papers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1391-1402, July.
    2. Guo, Zhan, 2013. "Does residential parking supply affect household car ownership? The case of New York City," Journal of Transport Geography, Elsevier, vol. 26(C), pages 18-28.
    3. Amelie Ewert & Mascha Brost & Christine Eisenmann & Sylvia Stieler, 2020. "Small and Light Electric Vehicles: An Analysis of Feasible Transport Impacts and Opportunities for Improved Urban Land Use," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    4. Johanna Kopp & Regine Gerike & Kay Axhausen, 2015. "Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members," Transportation, Springer, vol. 42(3), pages 449-469, May.
    5. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    6. Borrás, Susana & Edquist, Charles, 2013. "The choice of innovation policy instruments," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1513-1522.
    7. Araz Taeihagh & Moshe Givoni & René Bañares-Alcántara, 2013. "Which Policy First? A Network-Centric Approach for the Analysis and Ranking of Policy Measures," Environment and Planning B, , vol. 40(4), pages 595-616, August.
    8. Mort Webster, 2008. "Incorporating Path Dependency into Decision-Analytic Methods: An Application to Global Climate-Change Policy," Decision Analysis, INFORMS, vol. 5(2), pages 60-75, June.
    9. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    10. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    11. Hensher, David A., 2017. "Future bus transport contracts under a mobility as a service (MaaS) regime in the digital age: Are they likely to change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 86-96.
    12. Raphaela Pagany & Anna Marquardt & Roland Zink, 2019. "Electric Charging Demand Location Model—A User- and Destination-Based Locating Approach for Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Koogh, Mylène & Chappin, Emile & Heller, Reneé & Lukszo, Zofia, 2023. "Stakeholder prioritizations for electric vehicle charging across time periods," Transport Policy, Elsevier, vol. 142(C), pages 173-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    2. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    3. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    4. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    5. Ricard Esparza-Masana, 2022. "Towards Smart Specialisation 2.0. Main Challenges When Updating Strategies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(1), pages 635-655, March.
    6. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    7. Araz Taeihagh, 2017. "Network-centric policy design," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(2), pages 317-338, June.
    8. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    9. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    10. Gaofeng Gu & Xiaofeng Pan, 2023. "A Study on the Interdependence in Sustainable Mobility Tools and Home Energy Equipment Choices," Energies, MDPI, vol. 16(3), pages 1-16, January.
    11. Giliberto Capano & Michael Howlett, 2020. "The Knowns and Unknowns of Policy Instrument Analysis: Policy Tools and the Current Research Agenda on Policy Mixes," SAGE Open, , vol. 10(1), pages 21582440199, January.
    12. Wee, Sherilyn & Coffman, Makena & La Croix, Sumner, 2018. "Do electric vehicle incentives matter? Evidence from the 50 U.S. states," Research Policy, Elsevier, vol. 47(9), pages 1601-1610.
    13. Hardman, Scott, 2019. "Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 1-14.
    14. Santos, Georgina & Davies, Huw, 2020. "Incentives for quick penetration of electric vehicles in five European countries: Perceptions from experts and stakeholders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 326-342.
    15. van der Koogh, Mylène & Chappin, Emile & Heller, Reneé & Lukszo, Zofia, 2023. "Stakeholder prioritizations for electric vehicle charging across time periods," Transport Policy, Elsevier, vol. 142(C), pages 173-189.
    16. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    17. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    18. Groth, Sören, 2019. "Multimodal divide: Reproduction of transport poverty in smart mobility trends," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 56-71.
    19. Liotard, Isabelle & Revest, Valérie, 2018. "Contests as innovation policy instruments: Lessons from the US federal agencies' experience," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 57-69.
    20. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona, 2015. "Unpacking the policy processes for addressing systemic problems: The case of the technological innovation system of offshore wind in Germany," Working Papers "Sustainability and Innovation" S2/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12736-:d:681586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.