IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8717-d608414.html
   My bibliography  Save this article

Poverty Mapping in the Dian-Gui-Qian Contiguous Extremely Poor Area of Southwest China Based on Multi-Source Geospatial Data

Author

Listed:
  • Yongming Xu

    (School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yaping Mo

    (School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Shanyou Zhu

    (School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

Accurate information on the spatial distribution of poverty is of great significance to the formulation and implementation of the government’s targeted poverty alleviation policy. Traditional poverty mapping is mainly based on household survey data and statistical data, which cannot describe the spatial distribution of poverty well. This paper presents a study of mapping the integrated poverty index (IPI) in the Dian-Gui-Qian contiguous extremely poor area of southwest China. Based on multiple independent spatial variables extracted from NPP/VIIRS nighttime light (NTL) remote sensing data, digital elevation model (DEM), land cover information, open street map, and city accessibility data, eight algorithms were employed and compared to determine the optimal model for IPI estimation. Among these machine learning algorithms, traditional multiple linear regression had the lowest accuracy compared with the other seven machine learning algorithms and XGBoost showed the best performance. Feature selection was performed to reduce overfitting and five variables were finally selected. The final developed XGBoost model achieved an MAE of 0.0454 and an R2 of 0.68. The IPI map derived from the developed XGBoost model characterized the spatial pattern of poverty in the Dian-Gui-Qian contiguous extremely poor area well, which provided a good reference for the poverty alleviation work and public resources allocation in the study area. This study can also serve as a template for poverty mapping in other areas using remote sensing data.

Suggested Citation

  • Yongming Xu & Yaping Mo & Shanyou Zhu, 2021. "Poverty Mapping in the Dian-Gui-Qian Contiguous Extremely Poor Area of Southwest China Based on Multi-Source Geospatial Data," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8717-:d:608414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tilottama Ghosh & Sharolyn J. Anderson & Christopher D. Elvidge & Paul C. Sutton, 2013. "Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being," Sustainability, MDPI, vol. 5(12), pages 1-32, November.
    2. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    3. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    4. Njuguna, Christopher & McSharry, Patrick, 2017. "Constructing spatiotemporal poverty indices from big data," Journal of Business Research, Elsevier, vol. 70(C), pages 318-327.
    5. D. J. Weiss & A. Nelson & H. S. Gibson & W. Temperley & S. Peedell & A. Lieber & M. Hancher & E. Poyart & S. Belchior & N. Fullman & B. Mappin & U. Dalrymple & J. Rozier & T. C. D. Lucas & R. E. Howes, 2018. "A global map of travel time to cities to assess inequalities in accessibility in 2015," Nature, Nature, vol. 553(7688), pages 333-336, January.
    6. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    7. Hentschel, Jesko, et al, 2000. "Combining Census and Survey Data to Trace the Spatial Dimensions of Poverty: A Case Study of Ecuador," The World Bank Economic Review, World Bank, vol. 14(1), pages 147-165, January.
    8. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Mariyah & Wayne Wobcke, 2025. "Evaluating area-level features for proxy means test models: evidence from rural, semi-urban and urban districts in poverty targeting," Journal of Computational Social Science, Springer, vol. 8(3), pages 1-28, August.
    2. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    3. Aziza Usmanova & Ahmed Aziz & Dilshodjon Rakhmonov & Walid Osamy, 2022. "Utilities of Artificial Intelligence in Poverty Prediction: A Review," Sustainability, MDPI, vol. 14(21), pages 1-39, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh Thu Quang Pham & Pundarik Mukhopadhaya & Ha Vu, 2020. "Targeting Administrative Regions for Multidimensional Poverty Alleviation: A Study on Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(1), pages 143-189, July.
    2. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
    3. Simler, Kenneth R., 2006. "Nutrition mapping in Tanzania: an exploratory analysis," FCND discussion papers 204, International Food Policy Research Institute (IFPRI).
    4. Channing Arndt & Azhar M. Hussain & Vincenzo Salvucci & Finn Tarp & Lars Peter Østerdal, 2016. "Poverty Mapping Based on First‐Order Dominance with an Example from Mozambique," Journal of International Development, John Wiley & Sons, Ltd., vol. 28(1), pages 3-21, January.
    5. Leonardo Gasparini & Pablo Gluzmann & Leopoldo Tornarolli, 2022. "Caracterización de la población vulnerable: una propuesta con estimaciones para Argentina," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 68, pages 135-157, January-D.
    6. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    7. World Bank, 2004. "Morocco - Poverty Report : Strengthening Policy by Identifying the Geographic Dimension of poverty," World Bank Publications - Reports 14420, The World Bank Group.
    8. Long Thanh Giang & Cuong Viet Nguyen & Tuyen Quang Tran, 2016. "Firm agglomeration and local poverty reduction: evidence from an economy in transition," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 30(1), pages 80-98, May.
    9. Hyman, Glenn & Larrea, Carlos & Farrow, Andrew, 2005. "Methods, results and policy implications of poverty and food security mapping assessments," Food Policy, Elsevier, vol. 30(5-6), pages 453-460.
    10. Nicholas Minot & Bob Baulch, 2005. "Poverty Mapping with Aggregate Census Data: What is the Loss in Precision?," Review of Development Economics, Wiley Blackwell, vol. 9(1), pages 5-24, February.
    11. Davis, Benjamin, "undated". "Is it possible to avoid a lemon? Reflections on choosing a poverty mapping method," ESA Working Papers 289107, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    12. Sumonkanti Das & Syed Abul Basher & Bernard Baffour & Penny Godwin & Alice Richardson & Salim Rashid, 2024. "Improved estimates of child malnutrition trends in Bangladesh using remote-sensed data," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(4), pages 1-37, December.
    13. Shengnan Jiang & Guoen Wei & Zhenke Zhang & Yue Wang & Minghui Xu & Qing Wang & Priyanko Das & Binglin Liu, 2020. "Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data," Land, MDPI, vol. 10(1), pages 1-19, December.
    14. Simler, Kenneth R. & Nhate, Virgulino, 2005. "Poverty, inequality, and geographic targeting: evidence from small-area estimates in Mozambique," FCND discussion papers 192, International Food Policy Research Institute (IFPRI).
    15. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    16. Minot, Nicholas & Baulch, Bob, 2005. "Spatial patterns of poverty in Vietnam and their implications for policy," Food Policy, Elsevier, vol. 30(5-6), pages 461-475.
    17. Jing Dai & Stefan Sperlich & Walter Zucchini, 2011. "Estimating and Predicting Household Expenditures and Income Distributions," MAGKS Papers on Economics 201147, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Coudouel, Aline & Hentschel, Jesko & Wodon, Quentin, 2002. "Medición y análisis de la pobreza [Poverty Measurement and Analysis]," MPRA Paper 10491, University Library of Munich, Germany.
    19. Li, Peiran & Zhang, Haoran & Wang, Xin & Song, Xuan & Shibasaki, Ryosuke, 2020. "A spatial finer electric load estimation method based on night-light satellite image," Energy, Elsevier, vol. 209(C).
    20. Claudio A. Agostini & Philip H. Brown, 2010. "Local Distributional Effects Of Government Cash Transfers In Chile," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 56(2), pages 366-388, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8717-:d:608414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.