IDEAS home Printed from https://ideas.repec.org/a/akh/journl/639.html
   My bibliography  Save this article

Caracterización de la población vulnerable: una propuesta con estimaciones para Argentina

Author

Listed:
  • Leonardo Gasparini

    (Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS), Instituto de Investigaciones Económicas (IIE), Facultad de Ciencias Económicas, Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Argentina)

  • Pablo Gluzmann

    (Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS), Instituto de Investigaciones Económicas (IIE), Facultad de Ciencias Económicas, Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Argentina)

  • Leopoldo Tornarolli

    (Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS), Instituto de Investigaciones Económicas (IIE), Facultad de Ciencias Económicas, Universidad Nacional de La Plata, Argentina)

Abstract

En este trabajo se propone definir a la población más vulnerable de un país como aquellos individuos en hogares con alta probabilidad de ser pobres por ingreso en el presente, y bajo los distintos escenarios del pasado reciente. Se argumenta que esta definición permite una caracterización más ajustada de la población carenciada que la tradicional basada en ingresos corrientes. La metodología es ilustrada con estimaciones para Argentina.

Suggested Citation

  • Leonardo Gasparini & Pablo Gluzmann & Leopoldo Tornarolli, 2022. "Caracterización de la población vulnerable: una propuesta con estimaciones para Argentina," Económica, Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 68, pages 135-157, January-D.
  • Handle: RePEc:akh:journl:639
    as

    Download full text from publisher

    File URL: https://revistas.unlp.edu.ar/Economica/article/view/14214/13763
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hai‐Anh H. Dang & Elena Ianchovichina, 2018. "Welfare Dynamics With Synthetic Panels: The Case of the Arab World In Transition," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 64(s1), pages 114-144, October.
    2. Sabina Alkire, James E. Foster, Suman Seth, Maria Emma Santos, Jose M. Roche and Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 9 - Distribution and Dynamics," OPHI Working Papers ophiwp090_ch9.pdf, Queen Elizabeth House, University of Oxford.
    3. Sabina Alkire & James E. Foster & Suman Seth & Maria Emma Santos & Jose M. Roche & Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 7 - Data and Analysis," OPHI Working Papers 88, Queen Elizabeth House, University of Oxford.
    4. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    5. Nicolas Hérault & Stephen P. Jenkins, 2019. "How valid are synthetic panel estimates of poverty dynamics?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(1), pages 51-76, March.
    6. Sabina Alkire, James E. Foster, Suman Seth, Maria Emma Santos, José M. Roche and Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 7 - Data and Analysis," OPHI Working Papers ophiwp088_ch7.pdf, Queen Elizabeth House, University of Oxford.
    7. Alkire, Sabina & Foster, James & Seth, Suman & Santos, Maria Emma & Roche, Jose Manuel & Ballon, Paola, 2015. "Multidimensional Poverty Measurement and Analysis," OUP Catalogue, Oxford University Press, number 9780199689491, Decembrie.
    8. Francisco H.G. Ferreira & Julian Messina & Jamele Rigolini & Luis-Felipe López-Calva & Maria Ana Lugo & Renos Vakis, 2013. "Economic Mobility and the Rise of the Latin American Middle Class [La movilidad económica y el crecimiento de la clase media en América Latina]," World Bank Publications - Books, The World Bank Group, number 11858.
    9. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    10. Luis López-Calva & Eduardo Ortiz-Juarez, 2014. "A vulnerability approach to the definition of the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(1), pages 23-47, March.
    11. Sabina Alkire & James E. Foster & Suman Seth & Maria Emma Santos & Jose M. Roche & Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 2 - The Framework," OPHI Working Papers 83, Queen Elizabeth House, University of Oxford.
    12. Hentschel, Jesko, et al, 2000. "Combining Census and Survey Data to Trace the Spatial Dimensions of Poverty: A Case Study of Ecuador," The World Bank Economic Review, World Bank, vol. 14(1), pages 147-165, January.
    13. Sabina Alkire & James E. Foster & Suman Seth & Maria Emma Santos & Jose M. Roche & Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 9 - Distribution and Dynamics," OPHI Working Papers 90, Queen Elizabeth House, University of Oxford.
    14. Sabina Alkire, James E. Foster, Suman Seth, Maria Emma Santos, José M. Roche and Paola Ballon, 2015. "Multidimensional Poverty Measurement and Analysis: Chapter 2 - The Framework," OPHI Working Papers ophiwp083_ch2.pdf, Queen Elizabeth House, University of Oxford.
    15. Mauricio Gallardo, 2018. "Identifying Vulnerability To Poverty: A Critical Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1074-1105, September.
    16. Maria Emma Santos & Pablo Villatoro, 2018. "A Multidimensional Poverty Index for Latin America," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 64(1), pages 52-82, March.
    17. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:aep:anales:4752 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jhonatan Clausen & Nicolas Barrantes, 2022. "Developing a Comprehensive Multidimensional Wellbeing Index Based on What People Value: An Application to a Middle-Income Country," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(6), pages 3253-3283, December.
    2. Deniz Sevinc, 2020. "How Poor is Poor? A novel look at multidimensional poverty in the UK," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 833-859, June.
    3. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    4. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    5. Gallardo, Mauricio, 2022. "Measuring vulnerability to multidimensional poverty with Bayesian network classifiers," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 492-512.
    6. Anh Thu Quang Pham & Pundarik Mukhopadhaya & Ha Vu, 2020. "Targeting Administrative Regions for Multidimensional Poverty Alleviation: A Study on Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(1), pages 143-189, July.
    7. Fan Yang & Krishna P. Paudel, 2023. "Nutrition, multidimensional poverty and income: The case of Nepal," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1962-1984, October.
    8. M. Azhar Hussain & Nikolaj Siersbæk & Lars Peter Østerdal, 2020. "Multidimensional welfare comparisons of EU member states before, during, and after the financial crisis: a dominance approach," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(4), pages 645-686, December.
    9. Juan-Francisco Sánchez-García & María-del-Carmen Sánchez-Antón & Rosa Badillo-Amador & María-del-Carmen Marco-Gil & Juan-Vicente LLinares-Ciscar & Susana Álvarez-Díez, 2019. "A New Extension of Bourguignon and Chakravarty Index to Measure Educational Poverty and Its Application to the OECD Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(2), pages 479-501, September.
    10. Paolo Liberati & Giuliano Resce & Francesca Tosi, 2023. "The probability of multidimensional poverty: A new approach and an empirical application to EU‐SILC data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 668-700, September.
    11. Verónica Amarante & Maira Colacce, 2022. "Multidimensional Poverty Among Older People in Five Latin American Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 159(3), pages 945-965, February.
    12. Zaira Najam & Susan Olivia, 2021. "Does the impact of cash transfers differ across poverty measures? Evidence from Pakistan," Working Papers in Economics 21/09, University of Waikato.
    13. Burhan Can Karahasan & Fırat Bilgel, 2021. "The Topography and Sources of Multidimensional Poverty in Turkey," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 413-445, April.
    14. Zaira Najam & John Gibson, 2021. "Does within-country poverty convergence depend on spatial spillovers and the type of poverty measure? Evidence from Pakistan," Working Papers in Economics 21/07, University of Waikato.
    15. Nicolai Suppa, 2021. "Walls of glass. Measuring deprivation in social participation," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(2), pages 385-411, June.
    16. A. Spada & M. Fiore & A. Galati, 2024. "The Impact of Education and Culture on Poverty Reduction: Evidence from Panel Data of European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(3), pages 927-940, December.
    17. Satya R. Chakravarty & Nachiketa Chattopadhyay & Conchita D’Ambrosio, 2022. "An Axiomatic Approach to the Measurement of Comparative Female Disadvantage," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(2), pages 747-772, November.
    18. Rodrigo García Arancibia & Ignacio Girela, 2021. "Conditional Associations of Multidimensional Poverty Indicators in Argentina: A Graphical Representation," Asociación Argentina de Economía Política: Working Papers 4478, Asociación Argentina de Economía Política.
    19. Suman Seth & Maria Emma Santos, 2019. "On the Interaction Between Focus and Distributional Properties in Multidimensional Poverty Measurement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(2), pages 503-521, September.
    20. Decerf,Benoit Marie A & Ferrando,Mery & Quinn,Natalie N., 2021. "Global Income Poverty Measurement with Preference Heterogeneity : Theory and Application," Policy Research Working Paper Series 9844, The World Bank.

    More about this item

    Keywords

    poverty; incomes; vulnerability; Argentina;
    All these keywords.

    JEL classification:

    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:akh:journl:639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Carella (email available below). General contact details of provider: https://edirc.repec.org/data/funlpar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.