IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8293-d600860.html
   My bibliography  Save this article

Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots

Author

Listed:
  • Tolessa Deksissa

    (Water Resources Research Institute, University of the District of Columbia, Washington, DC 20008, USA)

  • Harris Trobman

    (Center for Sustainable Development and Resilience, University of the District of Columbia, Washington, DC 20008, USA)

  • Kamran Zendehdel

    (Center for Sustainable Development and Resilience, University of the District of Columbia, Washington, DC 20008, USA)

  • Hossain Azam

    (Department of Civil Engineering, University of the District of Columbia, Washington, DC 20008, USA)

Abstract

Due to the rapid urbanization in the context of the conventional linear economy, the vulnerability of the urban ecosystem to climate change has increased. As a result, connecting urban ecosystem services of different urban land uses is imperative for urban sustainability and resilience. In conventional land use planning, urban agriculture (UA) and urban stormwater management are treated as separate economic sectors with different-disconnected-ecosystem services. Furthermore, few studies have synthesized knowledge regarding the potential impacts of integration of UA and stormwater green infrastructures (GIs) on the quantity and quality of urban ecosystem services of both economic sectors. This study provides a detailed analysis of the imperative question—how should a city integrate the developments of both urban agriculture and stormwater green infrastructure to overcome barriers while enhancing the ecosystem services? To answer this question, we conducted an extensive literature review. The results show that integrating UA with GIs can enhance urban food production while protecting urban water quality. This paper provides an initial context and mechanisms for future researchers and city planners regarding the manner in which the synergies between UA and stormwater GIs can create greater value for the wellbeing of urban ecosystems and resilience in the circular economy.

Suggested Citation

  • Tolessa Deksissa & Harris Trobman & Kamran Zendehdel & Hossain Azam, 2021. "Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8293-:d:600860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manasvini Thiagarajan & Galen Newman & Shannon Van Zandt, 2018. "The Projected Impact of a Neighborhood-Scaled Green-Infrastructure Retrofit," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    2. Costanza, Robert, 2020. "Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability," Ecosystem Services, Elsevier, vol. 43(C).
    3. He, Guohua & Geng, Chenfan & Zhai, Jiaqi & Zhao, Yong & Wang, Qingming & Jiang, Shan & Zhu, Yongnan & Wang, Lizhen, 2021. "Impact of food consumption patterns change on agricultural water requirements: An urban-rural comparison in China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    5. Konstantina-Dimitra Salata & Athena Yiannakou, 2020. "The Quest for Adaptation through Spatial Planning and Ecosystem-Based Tools in Resilience Strategies," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    6. Mason, Brooke & Rufí-Salís, Martí & Parada, Felipe & Gabarrell, Xavier & Gruden, Cyndee, 2019. "Intelligent urban irrigation systems: Saving water and maintaining crop yields," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Di Marino, Mina & Tiitu, Maija & Lapintie, Kimmo & Viinikka, Arto & Kopperoinen, Leena, 2019. "Integrating green infrastructure and ecosystem services in land use planning. Results from two Finnish case studies," Land Use Policy, Elsevier, vol. 82(C), pages 643-656.
    8. Silvia Ronchi, 2021. "Ecosystem Services for Planning: A Generic Recommendation or a Real Framework? Insights from a Literature Review," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    9. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    10. Ana Cousiño & Gil Penha-Lopes, 2021. "Ecosystem Based Adaptation: Concept and Terminology in Strategic Adaptation Planning (Municipal and Inter-Municipal) in Portugal," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goździewicz-Biechońska, Justyna & Brzezińska-Rawa, Anna, 2022. "Protecting ecosystem services of urban agriculture against land-use change using market-based instruments. A Polish perspective," Land Use Policy, Elsevier, vol. 120(C).
    2. Patricia Sanches & Fabiano Lemes de Oliveira & Gabriela Celani, 2021. "Green and Compact: A Spatial Planning Model for Knowledge-Based Urban Development in Peri-Urban Areas," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    3. Renata Rapisarda & Francesco Nocera & Vincenzo Costanzo & Gaetano Sciuto & Rosa Caponetto, 2022. "Hydroponic Green Roof Systems as an Alternative to Traditional Pond and Green Roofs: A Literature Review," Energies, MDPI, vol. 15(6), pages 1-27, March.
    4. Luiza Vigne Bennedetti & Paulo Antônio de Almeida Sinisgalli & Maurício Lamano Ferreira & Fabiano Lemes de Oliveira, 2023. "Challenges to Promote Sustainability in Urban Agriculture Models: A Review," IJERPH, MDPI, vol. 20(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    2. Thompson, Kate & Sherren, Kate & Duinker, Peter N. & Terashima, Mikiko & Hayden, Anders, 2024. "Building the case for protecting urban nature: How urban planners use the ideas, rhetoric, and tools of ecosystem services science," Ecosystem Services, Elsevier, vol. 65(C).
    3. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    4. D'Alberto, R. & Targetti, S. & Schaller, L. & Bartolini, F. & Eichhorn, T. & Haltia, E. & Harmanny, K. & Le Gloux, F. & Nikolov, D. & Runge, T. & Vergamini, D. & Viaggi, D., 2024. "A European perspective on acceptability of innovative agri-environment-climate contract solutions," Land Use Policy, Elsevier, vol. 141(C).
    5. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    6. Renata Giedych & Gabriela Maksymiuk & Agata Cieszewska, 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study," Land, MDPI, vol. 13(9), pages 1-18, September.
    7. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    8. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    9. Conway, Tenley M. & Khan, Aliza & Esak, Nasra, 2020. "An analysis of green infrastructure in municipal policy: Divergent meaning and terminology in the Greater Toronto Area," Land Use Policy, Elsevier, vol. 99(C).
    10. Tandarić, Neven & Ives, Christopher D. & Watkins, Charles, 2022. "From city in the park to “greenery in plant pots”: The influence of socialist and post-socialist planning on opportunities for cultural ecosystem services," Land Use Policy, Elsevier, vol. 120(C).
    11. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    12. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    13. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    14. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    15. Silva, J.F. & Santos, J.L. & Ribeiro, P.F. & Marta-Pedroso, C. & Magalhães, M.R. & Moreira, F., 2024. "A farming systems approach to assess synergies and trade-offs among ecosystem services," Ecosystem Services, Elsevier, vol. 65(C).
    16. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    17. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    18. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Ileana Pătru-Stupariu & Andreea Ionescu & Radu Tudor & Alin-Ionuț Pleșoianu & Mioara Clius, 2022. "Online Environment as a Tool to Push Forward the Research: An Example for Landscape Disservices," Land, MDPI, vol. 11(2), pages 1-10, February.
    20. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8293-:d:600860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.