Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chien-Chiao Chao & Kuo-An Hung & Szu-Yuan Chen & Feng-Yi Lin & Tzu-Ping Lin, 2021. "Application of a High-Density Temperature Measurement System for the Management of the Kaohsiung House Project," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
- Hong Jin & Peng Cui & Nyuk Hien Wong & Marcel Ignatius, 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
- Yaping Chen & Bohong Zheng & Yinze Hu, 2020. "Numerical Simulation of Local Climate Zone Cooling Achieved through Modification of Trees, Albedo and Green Roofs—A Case Study of Changsha, China," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021.
"Publisher Correction: Disproportionate exposure to urban heat island intensity across major US cities,"
Nature Communications, Nature, vol. 12(1), pages 1-1, December.
- Angel Hsu & Glenn Sheriff & Tirthankar Chakraborty & Diego Manya, 2021. "Disproportionate exposure to urban heat island intensity across major US cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Shanker, M. & Hu, M. Y. & Hung, M. S., 1996. "Effect of data standardization on neural network training," Omega, Elsevier, vol. 24(4), pages 385-397, August.
- Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2018. "Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index," Energy, Elsevier, vol. 164(C), pages 627-641.
- Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
- Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
- Curry, Bruce, 2007. "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, Elsevier, vol. 179(1), pages 267-274, May.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jane M. Binner & Logan J. Kelly & Jonathan A. Tepper, 2025. "Professional Forecasters vs. Shallow Neural Network Ensembles: Assessing Inflation Prediction Accuracy," JRFM, MDPI, vol. 18(4), pages 1-16, March.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Noa Levin, 2023. "Book review essay: City, Climate and Architecture; Coping with Urban Climates," Urban Studies, Urban Studies Journal Limited, vol. 60(13), pages 2725-2730, October.
- Roberto Barrella & José Carlos Romero & Lucía Mariño, 2022. "Proposing a Novel Minimum Income Standard Approach to Energy Poverty Assessment: A European Case Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
- Curry, Bruce, 2007. "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, Elsevier, vol. 179(1), pages 267-274, May.
- Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
- Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022.
""An application of deep learning for exchange rate forecasting","
IREA Working Papers
202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. "“An application of deep learning for exchange rate forecasting”," AQR Working Papers 202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
- Sánchez-García, Daniel & Bienvenido-Huertas, David & Kim, Jungsoo & Pisello, Anna Laura, 2025. "Exploring the energy implications of human thermal adaptation to hot temperatures in present and future scenarios: a parametric simulation study," Energy, Elsevier, vol. 325(C).
- Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
- Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Ivan Rudik & Derek Lemoine & Antonia Marcheva, 2025.
"Equity and Efficiency in the Bipartisan Infrastructure Law’s Adaptation Investments,"
Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 6(1), pages 65-100.
- Ivan Rudik & Derek Lemoine & Antonia Marcheva, 2024. "Equity and Efficiency in the Bipartisan Infrastructure Law’s Adaptation Investments," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 6, pages 65-100, National Bureau of Economic Research, Inc.
- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Ben Moews & J. Michael Herrmann & Gbenga Ibikunle, 2018. "Lagged correlation-based deep learning for directional trend change prediction in financial time series," Papers 1811.11287, arXiv.org, revised Nov 2018.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8143-:d:598453. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8143-d598453.html