IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7849-d593847.html
   My bibliography  Save this article

A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil

Author

Listed:
  • José Roberto Ribas

    (Department of Industrial Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-485, Brazil)

  • Jorge Santos Ribas

    (Agricultural and Livestock Defense Agency of the State of Paraná, Cabral 80035-050, Brazil)

  • Andrés Suárez García

    (University Defense Center, Spanish Naval School, 36920 Marín, Spain)

  • Elena Arce Fariña

    (Research Group Cybernetics Science and Technology (CTC), Department of Industrial Engineering, University of A Coruña, 15405 Ferrol, Spain)

  • David González Peña

    (Research Group Solar and Wind Feasibility Technologies (SWIFT), Electromechanical Engineering Department, Universidad de Burgos, 09006 Burgos, Spain)

  • Ana García Rodríguez

    (Research Group Solar and Wind Feasibility Technologies (SWIFT), Electromechanical Engineering Department, Universidad de Burgos, 09006 Burgos, Spain)

Abstract

The construction of hydropower plants often requires the flooding of large land areas, causing considerable alterations in the natural environment. In the region surrounding the reservoir of the Corumbá IV hydroelectric plant, located in the Cerrado region of Central Brazil, two types of soil predominate, classified as Dystroferric Red Latosol and Dystroferric Haplic Cambisol. The plant owners have to restore the degraded biome after the flooding of the margins caused by the filling of the reservoir. An experiment was carried out with fifteen native species, selected for having ideal phytosociological properties. Nine of them showed a survivability considered satisfactory in a planting situation, with a view to large-scale planting. Assuming that the planting of native fruit trees can be a quick solution to the attraction and preservation of wildlife, it would therefore provide sustainable riparian revegetation around the reservoir. We adopted the SIMOS technique to rank the criteria based on four morphological features and a Fuzzy AHP model to rank the contributions of the nine fruit tree species to the sustainable restoration of part of the riparian vegetation cover around the reservoir. In practical terms, we concluded that the soil types did not have any influence on tree survival after two years of growth, but the native trees’ morphological features varied among the species. These findings simplify the large-scale planting of seedlings that must be carried out by the operator in the riparian forest around the reservoir.

Suggested Citation

  • José Roberto Ribas & Jorge Santos Ribas & Andrés Suárez García & Elena Arce Fariña & David González Peña & Ana García Rodríguez, 2021. "A Multicriteria Evaluation of Sustainable Riparian Revegetation with Local Fruit Trees around a Reservoir of a Hydroelectric Power Plant in Central Brazil," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7849-:d:593847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serra W. Buchanan & Megan Baskerville & Maren Oelbermann & Andrew M. Gordon & Naresh V. Thevathasan & Marney E. Isaac, 2020. "Plant Diversity and Agroecosystem Function in Riparian Agroforests: Providing Ecosystem Services and Land-Use Transition," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    2. Chand, Pushpendu & Thakkar, Jitesh J. & Ghosh, Kunal Kanti, 2018. "Analysis of supply chain complexity drivers for Indian mining equipment manufacturing companies combining SAP-LAP and AHP," Resources Policy, Elsevier, vol. 59(C), pages 389-410.
    3. de Faria, Felipe A.M. & Davis, Alex & Severnini, Edson & Jaramillo, Paulina, 2017. "The local socio-economic impacts of large hydropower plant development in a developing country," Energy Economics, Elsevier, vol. 67(C), pages 533-544.
    4. Büyüközkan, Gülçin & Ruan, Da, 2008. "Evaluation of software development projects using a fuzzy multi-criteria decision approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 464-475.
    5. Egre, Dominique & Milewski, Joseph C., 2002. "The diversity of hydropower projects," Energy Policy, Elsevier, vol. 30(14), pages 1225-1230, November.
    6. Martin, David M. & Hermoso, Virgilio & Pantus, Francis & Olley, Jon & Linke, Simon & Poff, N. LeRoy, 2016. "A proposed framework to systematically design and objectively evaluate non-dominated restoration tradeoffs for watershed planning and management," Ecological Economics, Elsevier, vol. 127(C), pages 146-155.
    7. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    8. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    9. Thomas L. Saaty & Luis G. Vargas, 2012. "How to Make a Decision," International Series in Operations Research & Management Science, in: Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, edition 2, chapter 0, pages 1-21, Springer.
    10. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Roberto Ribas & Juan Ignacio Perez Diaz, 2019. "Assessment of Sustainable Use of a Multipurpose Reservoir through the Multicriteria Approach: the Case of Corumbá IV Reservoir, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 591-602, January.
    2. Mohamed Hanine & Omar Boutkhoum & Tarik Agouti & Abdessadek Tikniouine, 2017. "A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection," Information Systems and e-Business Management, Springer, vol. 15(4), pages 897-925, November.
    3. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    4. Mohamed Hanine & Omar Boutkhoum & Tarik Agouti & Abdessadek Tikniouine, 0. "A new integrated methodology using modified Delphi-fuzzy AHP-PROMETHEE for Geospatial Business Intelligence selection," Information Systems and e-Business Management, Springer, vol. 0, pages 1-29.
    5. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    7. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    8. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    9. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    10. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    11. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    12. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Miroshnyk, N.V. & Likhanov, A.F. & Grabovska, T.O. & Teslenko, I.K. & Roubík, H., 2022. "Green infrastructure and relationship with urbanization – Importance and necessity of integrated governance," Land Use Policy, Elsevier, vol. 114(C).
    14. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    15. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    16. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    17. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    18. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    19. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    20. Lixin Shen & Kannan Govindan & Madan Shankar, 2015. "Evaluation of Barriers of Corporate Social Responsibility Using an Analytical Hierarchy Process under a Fuzzy Environment—A Textile Case," Sustainability, MDPI, vol. 7(3), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7849-:d:593847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.