IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6894-d577416.html
   My bibliography  Save this article

Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods

Author

Listed:
  • Shakira R. Hobbs

    (Civil Engineering Department, College of Engineering, University of Kentucky, Lexington, KY 40506, USA)

  • Tyler M. Harris

    (Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA)

  • William J. Barr

    (School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85004, USA)

  • Amy E. Landis

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO 2 ), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.

Suggested Citation

  • Shakira R. Hobbs & Tyler M. Harris & William J. Barr & Amy E. Landis, 2021. "Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6894-:d:577416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jane C. Bare, 2002. "Traci: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts," Journal of Industrial Ecology, Yale University, vol. 6(3‐4), pages 49-78, July.
    2. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Fiala, Marco & Feijoo, Gumersindo & Lema, Juan M. & Moreira, María Teresa, 2014. "Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops," Renewable Energy, Elsevier, vol. 68(C), pages 625-635.
    3. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    4. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyridoula Gerassimidou & Manoj Dora & Eleni Iacovidou, 2022. "A Tool for the Selection of Food Waste Management Approaches for the Hospitality and Food Service Sector in the UK," Resources, MDPI, vol. 11(10), pages 1-27, September.
    2. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    2. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    3. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    4. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    5. Huang, Haiping & Zhang, Hong & Han, Denglin, 2021. "Ferrocene addition for suppression of hydrogen sulfide formation during thermal recovery of oil sand bitumen," Energy, Elsevier, vol. 230(C).
    6. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    7. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    9. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    11. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    12. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    13. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    14. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    15. Yan, Cheng & Zheng, Zheng, 2014. "Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp," Applied Energy, Elsevier, vol. 113(C), pages 1008-1014.
    16. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    17. Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
    18. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    19. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    20. Edyta Słupek & Patrycja Makoś, 2020. "Absorptive Desulfurization of Model Biogas Stream Using Choline Chloride-Based Deep Eutectic Solvents," Sustainability, MDPI, vol. 12(4), pages 1-16, February.

    More about this item

    Keywords

    bioplastics; disposal; LCA;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6894-:d:577416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.