IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p114-d467758.html
   My bibliography  Save this article

Vulnerability of the São Paulo Macro Metropolis to Droughts and Natural Disasters: Local to Regional Climate Risk Assessments and Policy Responses

Author

Listed:
  • Pedro Henrique Campello Torres

    (Divisão Científica de Gestão, Ciência e Tecnologia Ambiental, Instituto de Energia e Ambiente (IEE), Universidade de São Paulo, Av. Prof. Luciano Gualberto, 1289—Butantã, São Paulo SP 05508-010, Brazil)

  • Demerval Aparecido Gonçalves

    (Engenharia de Infraestrutura Aeronáutica (PG-EIA), Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50—Vila das Acacias, São José dos Campos SP 12228-900, Brazil)

  • Flávia Mendes de Almeida Collaço

    (Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000—Ermelino Matarazzo, São Paulo SP 03828-000, Brazil)

  • Kauê Lopes dos Santos

    (Divisão Científica de Gestão, Ciência e Tecnologia Ambiental, Instituto de Energia e Ambiente (IEE), Universidade de São Paulo, Av. Prof. Luciano Gualberto, 1289—Butantã, São Paulo SP 05508-010, Brazil)

  • Katia Canil

    (Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Programa de Pós Graduação em Planejamento e Gestão do Território (PGT), Universidade Federal do ABC (UFABC), Av. dos Estados, 5001—Bangú, Santo André SP 09210-580, Brazil)

  • Wilson Cabral de Sousa Júnior

    (Núcleo de Estudos em Infraestrutura, Ambiente e Sustentabilidade—NINFA, Divisão de Engenharia Civil, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50—Vila das Acacias, São José dos Campos SP 12228-900, Brazil)

  • Pedro Roberto Jacobi

    (Divisão Científica de Gestão, Ciência e Tecnologia Ambiental, Instituto de Energia e Ambiente (IEE), Universidade de São Paulo, Av. Prof. Luciano Gualberto, 1289—Butantã, São Paulo SP 05508-010, Brazil)

Abstract

The São Paulo Macro Metropolis (SPMM) is one of the richest and most inequitable regions of the Global South and is already experiencing the impacts of severe climate events. This study analyzes climate risk assessments and policy responses for this territory as well as its vulnerabilities. The Index of Vulnerability to Natural Disasters related to Droughts in the Context of Climate Change (IVDNS—acronym in Portuguese) was used to identify and select the most vulnerable municipalities in the SPMM. Following vulnerability analysis, the municipalities were subjected to risk analysis in the context of existing Brazilian legislation. The results indicate that, despite having positive capacities to respond to climate change, the analyzed municipalities are far from advancing from the status quo or taking the actions that are necessary to face future challenges in a climate emergency scenario. The results indicate that, despite being the most vulnerable to droughts and natural disasters, the cities analyzed are not the most vulnerable in the São Paulo Macro Metropolis from a socio-economic point of view. On the contrary, these are regions that could have a strong institutional capacity to respond to present and future challenges.

Suggested Citation

  • Pedro Henrique Campello Torres & Demerval Aparecido Gonçalves & Flávia Mendes de Almeida Collaço & Kauê Lopes dos Santos & Katia Canil & Wilson Cabral de Sousa Júnior & Pedro Roberto Jacobi, 2020. "Vulnerability of the São Paulo Macro Metropolis to Droughts and Natural Disasters: Local to Regional Climate Risk Assessments and Policy Responses," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:114-:d:467758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Pelling & Matthias Garschagen, 2019. "Put equity first in climate adaptation," Nature, Nature, vol. 569(7756), pages 327-329, May.
    2. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    3. Gurgel, Angelo C. & Paltsev, Sergey & Breviglieri, Gustavo Velloso, 2019. "The impacts of the Brazilian NDC and their contribution to the Paris agreement on climate change," Environment and Development Economics, Cambridge University Press, vol. 24(4), pages 395-412, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingfeng Zhao & Fan Sun, 2023. "Study on the Influence Mechanism and Adjustment Path of Climate Risk on China’s High-Quality Economic Development," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceecee Holz & Guy Cunliffe & Kennedy Mbeva & Pieter W. Pauw & Harald Winkler, 2023. "Tempering and enabling ambition: how equity is considered in domestic processes preparing NDCs," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 23(3), pages 271-292, September.
    2. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    5. Yan Lu & Haikun Wang & Qin’geng Wang & Yanyan Zhang & Yiyong Yu & Yu Qian, 2017. "Global anthropogenic heat emissions from energy consumption, 1965–2100," Climatic Change, Springer, vol. 145(3), pages 459-468, December.
    6. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    8. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    9. Taihao Wang & Huadong Du & Zezheng Zhao & Zeming Zhou & Ana Russo & Hailing Xi & Jiping Zhang & Chengjun Zhou, 2022. "Prediction of the Impact of Meteorological Conditions on Air Quality during the 2022 Beijing Winter Olympics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    10. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    11. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    12. Hamdy Abdelaty & Daniel Weiss & Delia Mangelkramer, 2023. "Climate Policy in Developing Countries: Analysis of Climate Mitigation and Adaptation Measures in Egypt," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    13. Diop, Bassirou & Blanchard, Fabian & Sanz, Nicolas, 2018. "Mangrove increases resiliency of the French Guiana shrimp fishery facing global warming," Ecological Modelling, Elsevier, vol. 387(C), pages 27-37.
    14. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).
    15. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    16. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    17. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    18. Alma Elisabeth Peirson & Gina Ziervogel, 2021. "Sanitation Upgrading as Climate Action: Lessons for Local Government from a Community Informal Settlement Project in Cape Town," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    19. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    20. Deepal Doshi & Matthias Garschagen, 2020. "Understanding Adaptation Finance Allocation: Which Factors Enable or Constrain Vulnerable Countries to Access Funding?," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:114-:d:467758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.