IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v145y2017i3d10.1007_s10584-017-2092-z.html
   My bibliography  Save this article

Global anthropogenic heat emissions from energy consumption, 1965–2100

Author

Listed:
  • Yan Lu

    (Nanjing University)

  • Haikun Wang

    (Nanjing University)

  • Qin’geng Wang

    (Nanjing University
    Nanjing University of Information Science and Technology)

  • Yanyan Zhang

    (Nanjing University)

  • Yiyong Yu

    (Nanjing University)

  • Yu Qian

    (Nanjing University)

Abstract

Anthropogenic heat emission (AHE) is an important contributor to regional climate change, and may affect air quality in many ways. To gain a complete picture of global AHEs and lay a basis for modeling, in this study, global and regional AHEs from energy consumption are estimated for the past nearly five decades, and projected for the future through the year 2100. From 1965 to 2013, global AHE increased from 148 to 485 EJ/year, and the anthropogenic heat flux (AHF) over land increased from 0.03 to 0.10 W/m2. Meanwhile, AHE per capita increased from 44.6 to 68.1 GJ. Regional differences are remarkable. In 2013, AHFs in Asia Pacific (AP), the Middle East (ME), North America (NA), Europe and Eurasia (EE), South and Central America (SCA), and Africa (AF) were 0.23, 0.22, 0.09, 0.08, 0.04, and 0.02 W/m2, respectively. During the past 50 years, AHFs in ME, AP, AF, and SCA have increased by factors of 15.3, 10.8, 5.6, and 4.0. However, growth in NA and EE has been relatively slow. In the high, moderate, and low scenarios, by 2100, the terrestrial AHFs are projected to be 0.28, 0.24, and 0.19 W/m2, respectively. The largest increase would occur in Asia and ME. Although the mean AHF is small compared to the forcing of GHGs, it may exert quite distinctive effects on the climate and the environment because of the surface-based emissions and uneven geographical distribution.

Suggested Citation

  • Yan Lu & Haikun Wang & Qin’geng Wang & Yanyan Zhang & Yiyong Yu & Yu Qian, 2017. "Global anthropogenic heat emissions from energy consumption, 1965–2100," Climatic Change, Springer, vol. 145(3), pages 459-468, December.
  • Handle: RePEc:spr:climat:v:145:y:2017:i:3:d:10.1007_s10584-017-2092-z
    DOI: 10.1007/s10584-017-2092-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2092-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2092-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    2. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changwei Yuan & Dayong Wu & Hongchao Liu, 2017. "Using Grey Relational Analysis to Evaluate Energy Consumption, CO 2 Emissions and Growth Patterns in China’s Provincial Transportation Sectors," IJERPH, MDPI, vol. 14(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    2. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    3. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    4. Zhihui Li & Xiangzheng Deng & Xi Chu & Gui Jin & Wei Qi, 2019. "An Outlook on the Biomass Energy Development Out to 2100 in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1359-1377, December.
    5. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    6. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    7. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    8. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    9. Dandan Zhao & Hong S. He & Wen J. Wang & Lei Wang & Haibo Du & Kai Liu & Shengwei Zong, 2018. "Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    10. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    11. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    12. Kim, Sojung & Kim, Sumin, 2022. "Hybrid simulation framework for the production management of an ethanol biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    14. Céline Guivarch, 2012. "2°C or not 2°C?," Post-Print halshs-00757079, HAL.
    15. Vladimir F. Krapivin & Costas A. Varotsos & Vladimir Yu. Soldatov, 2017. "The Earth’s Population Can Reach 14 Billion in the 23rd Century without Significant Adverse Effects on Survivability," IJERPH, MDPI, vol. 14(8), pages 1-19, August.
    16. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    18. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    19. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    20. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:145:y:2017:i:3:d:10.1007_s10584-017-2092-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.