IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3354-d348096.html
   My bibliography  Save this article

Does Environmental Regulation Affect Natural Gas Consumption? Evidence from China with Spatial Insights

Author

Listed:
  • Xiaolin Wang

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Xiangyi Lu

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Na Zhou

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Jianzhong Xiao

    (School of Economics and Management, China University of Geosciences, Wuhan 430074, China)

  • Jun Chen

    (School of Marxism, China University of Geosciences, Wuhan 430074, China)

Abstract

How environmental regulations affect natural gas consumption in China is an urgent issue that must be addressed to achieve the optimal allocation of natural gas resources. The nonspatial panel model and spatial Durbin model have been applied in this paper to explore the impact of environmental regulation on gas consumption and the influence mechanism of such regulation. The results show that there is a N-inverted curve between environmental regulation and gas consumption at the national level. Three main mechanisms (or paths) by which environmental regulation affects natural gas consumption are discovered: controlling the total amount of coal in the energy mix, reducing industrial coal consumption and adjusting energy market prices. The first and third paths positively and significantly affect gas consumption, while the second path negatively affects gas consumption. Second, the spillover effects of environmental regulation promote the growth of gas consumption and integration of the natural gas market at the national level. Considering the provincial level, however, some regions have high regulation-high gas consumption intensity (HH), while others have low regulation-low gas consumption intensity (LL). Based on the above conclusions, we give recommendations for improving energy regulations in different regions to promote the development of regional natural gas markets.

Suggested Citation

  • Xiaolin Wang & Xiangyi Lu & Na Zhou & Jianzhong Xiao & Jun Chen, 2020. "Does Environmental Regulation Affect Natural Gas Consumption? Evidence from China with Spatial Insights," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3354-:d:348096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Cara, Stéphane & Henry, Loïc & Jayet, Pierre-Alain, 2018. "Optimal coverage of an emission tax in the presence of monitoring, reporting, and verification costs," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 71-93.
    2. Wang, Ting & Lin, Boqiang, 2014. "China's natural gas consumption and subsidies—From a sector perspective," Energy Policy, Elsevier, vol. 65(C), pages 541-551.
    3. Resul Cesur & Erdal Tekin & Aydogan Ulker, 2017. "Air Pollution and Infant Mortality: Evidence from the Expansion of Natural Gas Infrastructure," Economic Journal, Royal Economic Society, vol. 127(600), pages 330-362, March.
    4. Zhang, Kun & Zhang, Zong-Yong & Liang, Qiao-Mei, 2017. "An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization," Energy Policy, Elsevier, vol. 103(C), pages 203-211.
    5. Chai, Jian & Liang, Ting & Lai, Kin Keung & Zhang, Zhe George & Wang, Shouyang, 2018. "The future natural gas consumption in China: Based on the LMDI-STIRPAT-PLSR framework and scenario analysis," Energy Policy, Elsevier, vol. 119(C), pages 215-225.
    6. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    7. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    8. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    9. Peng, Jiachao & Xiao, Jianzhong & Zhang, Lian & Wang, Teng, 2020. "The impact of China's ‘Atmosphere Ten Articles’ policy on total factor productivity of energy exploitation: Empirical evidence using synthetic control methods," Resources Policy, Elsevier, vol. 65(C).
    10. Augusta Pelinski Raiher & Alysson Luiz Stege & Alex Sander Souza do Carmo, 2017. "Effect of Exports on the Economic Growth of Brazilian Microregions: An Analysis with Geographically Weighted Regression," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(12), pages 236-248, December.
    11. Ian Parry, Dirk Heine, Shanjun Li, and Eliza Lis, 2014. "How Should Different Countries Tax Fuels to Correct Environmental Externalities?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    12. repec:aen:journl:eeep3_2_05parry is not listed on IDEAS
    13. Liu, Chang & Lin, Boqiang, 2018. "Analysis of the changes in the scale of natural gas subsidy in China and its decomposition factors," Energy Economics, Elsevier, vol. 70(C), pages 37-44.
    14. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Peter Erickson & Michael Lazarus, 2018. "Would constraining US fossil fuel production affect global CO2 emissions? A case study of US leasing policy," Climatic Change, Springer, vol. 150(1), pages 29-42, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaolin & Qiu, Yangyang & Chen, Jun & Hu, Xiangping, 2022. "Evaluating natural gas supply security in China: An exhaustible resource market equilibrium model," Resources Policy, Elsevier, vol. 76(C).
    2. Xin Guan & Xiangyi Lu & Yang Wen, 2022. "Is China’s Natural Gas Consumption Converging? Empirical Research Based on Spatial Econometrics," Energies, MDPI, vol. 15(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
    2. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    3. Lin, Boqiang & Li, Zhensheng, 2020. "Analysis of the natural gas demand and subsidy in China: A multi-sectoral perspective," Energy, Elsevier, vol. 202(C).
    4. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    5. Dong, Kangyin & Dong, Xiucheng & Ren, Xiaohang, 2020. "Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China," Energy Economics, Elsevier, vol. 90(C).
    6. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    7. Yin, Yuwei & Lam, Jasmine Siu Lee, 2022. "Impacts of energy transition on Liquefied Natural Gas shipping: A case study of China and its strategies," Transport Policy, Elsevier, vol. 115(C), pages 262-274.
    8. Li, Fengyun & Li, Xingmei & Zheng, Haofeng & Yang, Fei & Dang, Ruinan, 2021. "How alternative energy competition shocks natural gas development in China: A novel time series analysis approach," Resources Policy, Elsevier, vol. 74(C).
    9. Si, Shuyang & Lyu, Mingjie & Lin Lawell, C.-Y. Cynthia & Chen, Song, 2018. "The effects of energy-related policies on energy consumption in China," Energy Economics, Elsevier, vol. 76(C), pages 202-227.
    10. Malzi, Mohamed Jaouad & Sohag, Kazi & Vasbieva, Dinara G. & Ettahir, Aziz, 2020. "Environmental policy effectiveness on residential natural gas use in OECD countries," Resources Policy, Elsevier, vol. 66(C).
    11. Lin, Boqiang & Li, Zhensheng, 2021. "Does natural gas pricing reform establish an effective mechanism in China: A policy evaluation perspective," Applied Energy, Elsevier, vol. 282(PA).
    12. Jian Chai & Ying Jin, 2020. "The Dynamic Impacts of Oil Price on China’s Natural Gas Consumption under the Change of Global Oil Market Patterns: An Analysis from the Perspective of Total Consumption and Structure," Energies, MDPI, vol. 13(4), pages 1-16, February.
    13. Wang, Tiantian & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Market reforms and determinants of import natural gas prices in China," Energy, Elsevier, vol. 196(C).
    14. Li, Hui & Zhao, Jun & Zhang, Ruining & Hou, Bingdong, 2022. "The natural gas consumption and mortality nexus: A mediation analysis," Energy, Elsevier, vol. 248(C).
    15. Lin, Boqiang & Kuang, Yunming, 2020. "Natural gas subsidies in the industrial sector in China: National and regional perspectives," Applied Energy, Elsevier, vol. 260(C).
    16. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    17. Bailey, Roy E. & Hatton, Timothy J. & Inwood, Kris, 2016. "Atmospheric Pollution and Child Health in Late Nineteenth Century Britain," IZA Discussion Papers 10428, Institute of Labor Economics (IZA).
    18. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    19. Salahodjaev, Raufhon & Yuldashev, Oybek, 2016. "Intelligence and greenhouse gas emissions: Introducing Intelligence Kuznets curve," MPRA Paper 68997, University Library of Munich, Germany.
    20. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3354-:d:348096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.