IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2621-d337153.html
   My bibliography  Save this article

Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America

Author

Listed:
  • Yslene Kachba

    (Department of Production Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

  • Daiane Maria de Genaro Chiroli

    (Department of Production Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

  • Jônatas T. Belotti

    (Department of Computational Science, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

  • Thiago Antonini Alves

    (Department of Mechanical Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

  • Yara de Souza Tadano

    (Department of Mathematics, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

  • Hugo Siqueira

    (Department of Computational Science, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil
    Department of Electric Engineering, Federal University of Technology—Parana (UTFPR), Ponta Grossa 84017-220, Brazil)

Abstract

The emission of pollutants from vehicles is presented as a prime factor deteriorating air quality. Thus, seeking public policies encouraging the use and the development of more sustainable vehicles is paramount to preserve populations’ health. To better understand the health risks caused by air pollution and exclusively by mobile sources urges the question of which input variables should be considered. Therefore, this research aims to estimate the impacts on populations’ health related to road transport variables for São Paulo, Brazil, the largest metropolis in South America. We used three Artificial Neural Networks (ANN) (Multilayer Perceptron—MLP, Extreme Learning Machines—ELM, and Echo State Neural Networks—ESN) to estimate the impacts of carbon monoxide, nitrogen oxides, ozone, sulfur dioxide, and particulate matter on outcomes for respiratory diseases (morbidity—hospital admissions and mortality). We also used unusual inputs, such as road vehicles fleet, distributed and sold fuels amount, and vehicle average mileage. We also used deseasonalization and the Variable Selection Methods (VSM) (Mutual Information Filter and Wrapper). The results showed that the VSM excluded some variables, but the best performances were reached considering all of them. The ELM achieved the best overall results to morbidity, and the ESN to mortality, both using deseasonalization. Our study makes an important contribution to the following United Nations Sustainable Development Goals: 3—good health and well-being, 7—affordable and clean energy, and 11—sustainable cities and communities. These research findings will guide government about future legislations, public policies aiming to warranty and improve the health system.

Suggested Citation

  • Yslene Kachba & Daiane Maria de Genaro Chiroli & Jônatas T. Belotti & Thiago Antonini Alves & Yara de Souza Tadano & Hugo Siqueira, 2020. "Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2621-:d:337153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luna, Ivette & Ballini, Rosangela, 2011. "Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 708-724.
    2. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo S. G. de Mattos Neto & Manoel H. N. Marinho & Hugo Siqueira & Yara de Souza Tadano & Vivian Machado & Thiago Antonini Alves & João Fausto L. de Oliveira & Francisco Madeiro, 2020. "A Methodology to Increase the Accuracy of Particulate Matter Predictors Based on Time Decomposition," Sustainability, MDPI, vol. 12(18), pages 1-33, September.
    2. Jônatas Belotti & Hugo Siqueira & Lilian Araujo & Sérgio L. Stevan & Paulo S.G. de Mattos Neto & Manoel H. N. Marinho & João Fausto L. de Oliveira & Fábio Usberti & Marcos de Almeida Leone Filho & Att, 2020. "Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants," Energies, MDPI, vol. 13(18), pages 1-22, September.
    3. Elias Amancio Siqueira-Filho & Maira Farias Andrade Lira & Attilio Converti & Hugo Valadares Siqueira & Carmelo J. A. Bastos-Filho, 2023. "Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models," Energies, MDPI, vol. 16(7), pages 1-27, March.
    4. Hyeon-Ju Oh & Jongbok Kim, 2020. "Monitoring Air Quality and Estimation of Personal Exposure to Particulate Matter Using an Indoor Model and Artificial Neural Network," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    5. Maroto Estrada, Pedro & de Lima, Daniela & Bauer, Peter H. & Mammetti, Marco & Bruno, Joan Carles, 2023. "Deep learning in the development of energy Management strategies of hybrid electric Vehicles: A hybrid modeling approach," Applied Energy, Elsevier, vol. 329(C).
    6. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    7. Adiqa Kausar Kiani & Wasim Ullah Khan & Muhammad Asif Zahoor Raja & Yigang He & Zulqurnain Sabir & Muhammad Shoaib, 2021. "Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    8. Huafang Huang & Xiaomao Wu & Xianfu Cheng, 2020. "The Analysis of the Urban Sprawl Measurement System of the Yangtze River Economic Belt, Based on Deep Learning and Neural Network Algorithm," IJERPH, MDPI, vol. 17(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    2. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    3. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    4. Zhongqi Deng & Peng Tian, 2020. "Are China's subsidies for electric vehicles effective?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 475-489, June.
    5. Wang, Ning & Tang, Linhao & Zhang, Wenjian & Guo, Jiahui, 2019. "How to face the challenges caused by the abolishment of subsidies for electric vehicles in China?," Energy, Elsevier, vol. 166(C), pages 359-372.
    6. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    7. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    8. Rongqiu Song & Dimitris Potoglou, 2020. "Are Existing Battery Electric Vehicles Adoption Studies Able to Inform Policy? A Review for Policymakers," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    9. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    10. Park, Hyunwoo & Lee, Chungmok, 2024. "An exact algorithm for maximum electric vehicle flow coverage problem with heterogeneous chargers, nonlinear charging time and route deviations," European Journal of Operational Research, Elsevier, vol. 315(3), pages 926-951.
    11. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    12. Turan, Fikret Korhan, 2024. "A theoretical stakeholder model of automotive industry and policy implications for sustainable transport after Dieselgate," Transport Policy, Elsevier, vol. 148(C), pages 192-205.
    13. Gulzari, Adeela & Wang, Yuchen & Prybutok, Victor, 2022. "A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    14. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    15. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    16. Du, Zhili & Lin, Boqiang, 2017. "How oil price changes affect car use and purchase decisions? Survey evidence from Chinese cities," Energy Policy, Elsevier, vol. 111(C), pages 68-74.
    17. Zulfiqar Ali Lashari & Joonho Ko & Seunghyun Jung & Sungtaek Choi, 2022. "Choices of Potential Car Buyers Regarding Alternative Fuel Vehicles in South Korea: A Discrete Choice Modeling Approach," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    18. Vazifeh, Mohammad M. & Zhang, Hongmou & Santi, Paolo & Ratti, Carlo, 2019. "Optimizing the deployment of electric vehicle charging stations using pervasive mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 75-91.
    19. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    20. Hugo Siqueira & Mariana Macedo & Yara de Souza Tadano & Thiago Antonini Alves & Sergio L. Stevan & Domingos S. Oliveira & Manoel H.N. Marinho & Paulo S.G. de Mattos Neto & João F. L. de Oliveira & Ive, 2020. "Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods," Energies, MDPI, vol. 13(16), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2621-:d:337153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.