IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2942-d1105321.html
   My bibliography  Save this article

Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models

Author

Listed:
  • Elias Amancio Siqueira-Filho

    (Polytechnic School of Pernambuco, Pernambuco University, Benfica St., 455, Madalena, Recife 50720-001, Brazil
    Advanced Institute of Technology and Innovation (IATI), Potyra St., 31, Prado, Recife 50751-310, Brazil)

  • Maira Farias Andrade Lira

    (Advanced Institute of Technology and Innovation (IATI), Potyra St., 31, Prado, Recife 50751-310, Brazil)

  • Attilio Converti

    (Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy)

  • Hugo Valadares Siqueira

    (Department of Electronics, Federal University of Technology—Paraná (UTFPR), Dr. Washington Subtil Chueire St., 330, Jardim Carvalho, Ponta Grossa 84017-220, Brazil)

  • Carmelo J. A. Bastos-Filho

    (Polytechnic School of Pernambuco, Pernambuco University, Benfica St., 455, Madalena, Recife 50720-001, Brazil)

Abstract

Monitoring and controlling thermoelectric power plants (TPPs) operational parameters have become essential to ensure system reliability, especially in emergencies. Due to system complexity, operating parameters control is often performed based on technical know-how and simplified analytical models that can result in limited observations. An alternative to this task is using time series forecasting methods that seek to generalize system characteristics based on past information. However, the analysis of these techniques on large diesel/HFO engines used in Brazilian power plants under the dispatch regime has not yet been well-explored. Therefore, given the complex characteristics of engine fuel consumption during power generation, this work aimed to investigate patterns generalization abilities when linear and nonlinear univariate forecasting models are used on a representative database related to an engine-driven generator used in a TPP located in Pernambuco, Brazil. Fuel consumption predictions based on artificial neural networks were directly compared to XGBoost regressor adaptation to perform this task as an alternative with lower computational cost. AR and ARIMA linear models were applied as a benchmark, and the PSO optimizer was used as an alternative during model adjustment. In summary, it was possible to observe that AR and ARIMA-PSO had similar performances in operations and lower error distributions during full-load power output with normal error frequency distribution of −0.03 ± 3.55 and 0.03 ± 3.78 kg/h, respectively. Despite their similarities, ARIMA-PSO achieved better adherence in capturing load adjustment periods. On the other hand, the nonlinear approaches NAR and XGBoost showed significantly better performance, achieving mean absolute error reductions of 42.37% and 30.30%, respectively, when compared with the best linear model. XGBoost modeling was 8.7 times computationally faster than NAR during training. The nonlinear models were better at capturing disturbances related to fuel consumption ramp, shut-down, and sudden fluctuations steps, despite being inferior in forecasting at full-load, especially XGBoost due to its high sensitivity with slight fuel consumption variations.

Suggested Citation

  • Elias Amancio Siqueira-Filho & Maira Farias Andrade Lira & Attilio Converti & Hugo Valadares Siqueira & Carmelo J. A. Bastos-Filho, 2023. "Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models," Energies, MDPI, vol. 16(7), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2942-:d:1105321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Hugo Siqueira & Mariana Macedo & Yara de Souza Tadano & Thiago Antonini Alves & Sergio L. Stevan & Domingos S. Oliveira & Manoel H.N. Marinho & Paulo S.G. de Mattos Neto & João F. L. de Oliveira & Ive, 2020. "Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods," Energies, MDPI, vol. 13(16), pages 1-35, August.
    3. Yslene Kachba & Daiane Maria de Genaro Chiroli & Jônatas T. Belotti & Thiago Antonini Alves & Yara de Souza Tadano & Hugo Siqueira, 2020. "Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
    4. Rodrigo P. Monteiro & Gabriel A. Lima & José P. G. Oliveira & Daniel S. C. Cunha & Carmelo J. A. Bastos-Filho, 2018. "Improving Adaptive Filters for Active Noise Control Using Particle Swarm Optimization," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 9(4), pages 47-64, October.
    5. Hani Al-Rawashdeh & Ahmad O. Hasan & Mohamed R. Gomaa & Ahmad Abu-jrai & Mohammad Shalby, 2022. "Determination of Carbonyls Compound, Ketones and Aldehydes Emissions from CI Diesel Engines Fueled with Pure Diesel/Diesel Methanol Blends," Energies, MDPI, vol. 15(21), pages 1-16, October.
    6. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rúa Orozco, Dimas José & Da Purificação Ferreira, Marcos Vinicius & Moreira, Thayná & Venturini, Osvaldo José & Escobar Palácio, José Carlos & Mendes, Tiago & Vitoriano Julio, Alisson Aparecido, 2024. "Evaluation of the influence of exergy disaggregation on the results of thermoeconomic diagnosis using exergetic operators," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    2. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    3. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    4. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    5. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    6. Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
    7. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins," Papers 2307.08853, arXiv.org.
    8. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    9. Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    12. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    13. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    14. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    15. Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
    16. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models: Evidence from European Financial Markets and Bitcoins," Forecasting, MDPI, vol. 5(2), pages 1-15, June.
    17. Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    18. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
    19. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    20. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2942-:d:1105321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.