IDEAS home Printed from
   My bibliography  Save this article

A data-driven newsvendor problem: From data to decision


  • Huber, Jakob
  • Müller, Sebastian
  • Fleischmann, Moritz
  • Stuckenschmidt, Heiner


Retailers that offer perishable items are required to make ordering decisions for hundreds of products on a daily basis. This task is non-trivial because the risk of ordering too much or too little is associated with overstocking costs and unsatisfied customers. The well-known newsvendor model captures the essence of this trade-off. Traditionally, this newsvendor problem is solved based on a demand distribution assumption. However, in reality, the true demand distribution is hardly ever known to the decision maker. Instead, large datasets are available that enable the use of empirical distributions. In this paper, we investigate how to exploit this data for making better decisions. We identify three levels on which data can generate value, and we assess their potential. To this end, we present data-driven solution methods based on Machine Learning and Quantile Regression that do not require the assumption of a specific demand distribution. We provide an empirical evaluation of these methods with point-of-sales data for a large German bakery chain. We find that Machine Learning approaches substantially outperform traditional methods if the dataset is large enough. We also find that the benefit of improved forecasting dominates other potential benefits of data-driven solution methods.

Suggested Citation

  • Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:3:p:904-915
    DOI: 10.1016/j.ejor.2019.04.043

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    2. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Lau, Hon-Shiang & Hing-Ling Lau, Amy, 1996. "Estimating the demand distributions of single-period items having frequent stockouts," European Journal of Operational Research, Elsevier, vol. 92(2), pages 254-265, July.
    7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    8. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    9. Gregory A. Godfrey & Warren B. Powell, 2001. "An Adaptive, Distribution-Free Algorithm for the Newsvendor Problem with Censored Demands, with Applications to Inventory and Distribution," Management Science, INFORMS, vol. 47(8), pages 1101-1112, August.
    10. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    11. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    12. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2007. "Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 821-839, November.
    13. Sachs, Anna-Lena & Minner, Stefan, 2014. "The data-driven newsvendor with censored demand observations," International Journal of Production Economics, Elsevier, vol. 149(C), pages 28-36.
    14. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    15. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    16. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    17. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    18. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    19. Qin, Yan & Wang, Ruoxuan & Vakharia, Asoo J. & Chen, Yuwen & Seref, Michelle M.H., 2011. "The newsvendor problem: Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 213(2), pages 361-374, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:3:p:904-915. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.