IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v7y2023i4p79-d1273141.html
   My bibliography  Save this article

Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions

Author

Listed:
  • Thais de Castro Moraes

    (Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
    Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore)

  • Jiancheng Qin

    (Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore)

  • Xue-Ming Yuan

    (Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore)

  • Ek Peng Chew

    (Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore)

Abstract

Background: Over the past decade, the potential advantages of employing deep learning models and leveraging auxiliary data in data-driven end-to-end (E2E) frameworks to enhance inventory decision-making have gained recognition. However, current approaches predominantly rely on feed-forward networks, which may have difficulty capturing temporal correlations in time series data and identifying relevant features, resulting in less accurate predictions. Methods: Addressing this gap, we introduce novel E2E deep learning frameworks that combine Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for resolving single-period inventory ordering decisions, also termed the Newsvendor Problem (NVP). This study investigates the performance drivers of hybrid CNN-LSTM architectures, coupled with an evolving algorithm for optimizing network configuration. Results: Empirical evaluation of real-world retail data demonstrates that our proposed models proficiently extract pertinent features and interpret sequential data characteristics, leading to more accurate and informed ordering decisions. Notably, results showcase substantial benefits, yielding up to an 85% reduction in costs compared to a univariate benchmark and up to 40% savings compared to a feed-forward E2E deep learning architecture. Conclusions : This confirms that, in practical scenarios, understanding the impact of features on demand empowers decision-makers to derive tailored, cost-effective ordering decisions for each store or product category.

Suggested Citation

  • Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
  • Handle: RePEc:gam:jlogis:v:7:y:2023:i:4:p:79-:d:1273141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/7/4/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/7/4/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    2. Sushil Punia & Konstantinos Nikolopoulos & Surya Prakash Singh & Jitendra K. Madaan & Konstantia Litsiou, 2020. "Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4964-4979, July.
    3. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    4. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    5. Shao, Saijun & Xu, Gangyan & Li, Ming & Huang, George Q., 2019. "Synchronizing e-commerce city logistics with sliding time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 17-28.
    6. Sumit Maheshwari & Prerna Gautam & Chandra K. Jaggi, 2021. "Role of Big Data Analytics in supply chain management: current trends and future perspectives," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1875-1900, March.
    7. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    8. Retsef Levi & Georgia Perakis & Joline Uichanco, 2015. "The Data-Driven Newsvendor Problem: New Bounds and Insights," Operations Research, INFORMS, vol. 63(6), pages 1294-1306, December.
    9. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    10. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    11. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2007. "Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 821-839, November.
    12. Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
    13. Afshin Oroojlooyjadid & Lawrence V. Snyder & Martin Takáč, 2020. "Applying deep learning to the newsvendor problem," IISE Transactions, Taylor & Francis Journals, vol. 52(4), pages 444-463, April.
    14. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    2. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    3. Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
    4. Shaochong Lin & Youhua (Frank) Chen & Yanzhi Li & Zuo‐Jun Max Shen, 2022. "Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1630-1644, April.
    5. Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
    6. Lin An & Andrew A. Li & Benjamin Moseley & R. Ravi, 2023. "The Nonstationary Newsvendor with (and without) Predictions," Papers 2305.07993, arXiv.org, revised Oct 2023.
    7. van der Laan, Niels & Teunter, Ruud H. & Romeijnders, Ward & Kilic, Onur A., 2022. "The data-driven newsvendor problem: Achieving on-target service-levels using distributionally robust chance-constrained optimization," International Journal of Production Economics, Elsevier, vol. 249(C).
    8. Zhen-Yu Chen & Zhi-Ping Fan & Minghe Sun, 2023. "Machine Learning Methods for Data-Driven Demand Estimation and Assortment Planning Considering Cross-Selling and Substitutions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 158-177, January.
    9. Pirayesh Neghab, Davood & Khayyati, Siamak & Karaesmen, Fikri, 2022. "An integrated data-driven method using deep learning for a newsvendor problem with unobservable features," European Journal of Operational Research, Elsevier, vol. 302(2), pages 482-496.
    10. Meng Qi & Ying Cao & Zuo-Jun (Max) Shen, 2022. "Distributionally Robust Conditional Quantile Prediction with Fixed Design," Management Science, INFORMS, vol. 68(3), pages 1639-1658, March.
    11. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
    12. Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
    13. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    14. Rui Wang & Xiao Yan & Chuanjin Zhu, 2023. "Solving a Distribution-Free Multi-Period Newsvendor Problem With Advance Purchase Discount via an Online Ordering Solution," SAGE Open, , vol. 13(2), pages 21582440231, June.
    15. Yinchu Zhu & Ilya O. Ryzhov, 2022. "Optimal data-driven hiring with equity for underrepresented groups," Papers 2206.09300, arXiv.org.
    16. Gah-Yi Ban, 2020. "Confidence Intervals for Data-Driven Inventory Policies with Demand Censoring," Operations Research, INFORMS, vol. 68(2), pages 309-326, March.
    17. Corredera, Alberto & Ruiz Mora, Carlos, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Bai, Qingguo & Xu, Jianteng & Gong, Yeming & Chauhan, Satyaveer S., 2022. "Robust decisions for regulated sustainable manufacturing with partial demand information: Mandatory emission capacity versus emission tax," European Journal of Operational Research, Elsevier, vol. 298(3), pages 874-893.
    19. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    20. Jinzhi Bu & David Simchi-Levi & Li Wang, 2023. "Offline Pricing and Demand Learning with Censored Data," Management Science, INFORMS, vol. 69(2), pages 885-903, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:7:y:2023:i:4:p:79-:d:1273141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.