IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9734-d449087.html
   My bibliography  Save this article

Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective

Author

Listed:
  • Baofeng Sun

    (College of Transportation, Jilin University, Changchun 130022, China)

  • Jiaojiao Liu

    (College of Transportation, Jilin University, Changchun 130022, China)

  • Junyi Hao

    (Management College, Jilin University, Changchun 130025, China)

  • Xiuxiu Shen

    (Xi’an Jingdong Xuncheng Logistics Co., Ltd., Xi’an 710028, China)

  • Xinhua Mao

    (School of Economics and Management, Chang’an University, Xi’an 710064, China
    Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Xianmin Song

    (College of Transportation, Jilin University, Changchun 130022, China)

Abstract

The networked operation of Urban Rail Transit (URT) brings the new challenge of network-wide maintenance. This research focuses on the URT Network-Wide Maintenance Decision-Making Problem (URT-NMDP), including regionalized maintenance network design and maintenance resource allocation. In this work, we proposed a bi-objective integer programming model that integrates the characteristics of set coverage and P-median models, resulting in the regionalized maintenance network design model. Some critical factors are considered in the model, such as the importance of node, the maximum failure response time, and maintenance guarantee rules. We designed a NSGA-II based algorithm to solve the model. Moreover, due to the uncertainty of failures in the URT network, we developed the method of allocating maintenance resources based on Monte Carlo simulation to strengthen the reliability of the regionalized maintenance network. With the model and algorithm presented in this work, we obtained Pareto optimal solutions of URT-NMDP, i.e., URT network-wide maintenance planning schemes, which include the number and location of maintenance points, the allocation of demand points, and the amount of maintenance units. Finally, a real-world case is studied to evaluate the operating performance of these schemes for verifying the method in our paper. The results of the case study demonstrate that the reasonable and tested-in-practice maximum failure response time is the precondition for the efficient URT maintenance network. The maintenance scheme considered the weighted importance of node shows the optimal performance, with the shortest overall maintenance path and the minimum average failure response time and investment cost on maintenance resources.

Suggested Citation

  • Baofeng Sun & Jiaojiao Liu & Junyi Hao & Xiuxiu Shen & Xinhua Mao & Xianmin Song, 2020. "Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9734-:d:449087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    2. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    3. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    4. Hoong Chuin Lau & Zhi Yuan & Aldy Gunawan, 2016. "Patrol scheduling in urban rail network," Annals of Operations Research, Springer, vol. 239(1), pages 317-342, April.
    5. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    6. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. S. Li & Z.Z. Li, 2012. "Spare parts allocation by improved genetic algorithm and Monte Carlo simulation," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(6), pages 997-1006.
    8. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    9. Shahrzad M. Pour & Kourosh Marjani Rasmussen & John H. Drake & Edmund K. Burke, 2019. "A constructive framework for the preventive signalling maintenance crew scheduling problem in the Danish railway system," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(11), pages 1965-1982, November.
    10. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    11. Yong Wang & Yingying Yuan & Xiangyang Guan & Haizhong Wang & Yong Liu & Maozeng Xu, 2019. "Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles under Time Windows," Sustainability, MDPI, vol. 11(12), pages 1-30, June.
    12. Zhang, Hui & Zhuge, Chengxiang & Yu, Xiaohua, 2018. "Identifying hub stations and important lines of bus networks: A case study in Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 394-402.
    13. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zuo & Mengxing Shang & Jianwu Dang, 2022. "Research on the Optimization Model of Railway Emergency Rescue Network Considering Space-Time Accessibility," Sustainability, MDPI, vol. 14(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    2. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    4. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    5. Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.
    6. Wenhao Yu & Yujie Chen & Menglin Guan, 2021. "Hierarchical siting of macro fire station and micro fire station," Environment and Planning B, , vol. 48(7), pages 1972-1988, September.
    7. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    8. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    9. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    10. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    11. Baray, Jérôme & Cliquet, Gérard, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Journal of Business Research, Elsevier, vol. 66(1), pages 127-132.
    12. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    14. Kexin Li & Jianxu Liu & Yuting Xue & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Consequences of Ignoring Dependent Error Components and Heterogeneity in a Stochastic Frontier Model: An Application to Rice Producers in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-17, July.
    15. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Junhu Ruan & Felix T. S. Chan & Xiaofeng Zhao, 2018. "Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    17. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    18. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2021. "Robust facility location under demand uncertainty and facility disruptions," Omega, Elsevier, vol. 103(C).
    19. Chenxi Li & Kening Wu & Xiangyu Gao, 2020. "Manufacturing industry agglomeration and spatial clustering: Evidence from Hebei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2941-2965, April.
    20. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9734-:d:449087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.