IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp394-402.html
   My bibliography  Save this article

Identifying hub stations and important lines of bus networks: A case study in Xiamen, China

Author

Listed:
  • Zhang, Hui
  • Zhuge, Chengxiang
  • Yu, Xiaohua

Abstract

Hub stations and important lines play key roles in transfers between stations. In this paper, a node failure model is proposed to identify hub stations. In the model, we introduce two new indicators called neighborhood degree ratio and transfer index to evaluate the importance of stations, which consider neighborhood stations’ degree of station and the initial transfer times between stations. Moreover, line accessibility is developed to measure the importance of lines in the bus network. Xiamen bus network in 2016 is utilized to test the model. The results show that the two introduced indicators are more effective to identify hub stations compared with traditional complex network indicators such as degree, clustering coefficient and betweenness.

Suggested Citation

  • Zhang, Hui & Zhuge, Chengxiang & Yu, Xiaohua, 2018. "Identifying hub stations and important lines of bus networks: A case study in Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 394-402.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:394-402
    DOI: 10.1016/j.physa.2018.02.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302747
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Tao & Qin, Kun & Shan, Jie, 2014. "An exploratory analysis on the evolution of the US airport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 266-279.
    2. Zhang, Jianhua & Wang, Shuliang & Zhang, Zhaojun & Zou, Kuansheng & Shu, Zhan, 2016. "Characteristics on hub networks of urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 502-507.
    3. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    4. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    5. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    6. Li, W. & Cai, X., 2007. "Empirical analysis of a scale-free railway network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 693-703.
    7. John Zhen Fu Pang & Nasri Bin Othman & Keng Meng Ng & Christopher Monterola, 2015. "Efficiency and robustness of different bus network designs," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-15.
    8. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    9. Bo Ouyang & Xinyu Jin & Yongxiang Xia & Lurong Jiang, 2014. "Change of network load due to node removal," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(3), pages 1-6, March.
    10. Barberillo, Josep & Saldaña, Joan, 2011. "Navigation in large subway networks: An informational approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 374-386.
    11. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Xinyue & Chen, Junlan & Zhu, Zhenjun & Guo, Xiucheng & Liu, Pei & Jiang, Xiaohong, 2022. "How to locate urban–rural transit hubs from the viewpoint of county integration?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Wang, Min & Cheng, Qing & Huang, Jincai & Cheng, Guangquan, 2021. "Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Abdelaty, Hatem & Mohamed, Moataz & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Temporal robustness assessment framework for city-scale bus transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    5. Jianmin Jia & Chenhui Liu & Tao Wan, 2019. "Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    6. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Baofeng Sun & Jiaojiao Liu & Junyi Hao & Xiuxiu Shen & Xinhua Mao & Xianmin Song, 2020. "Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective," Sustainability, MDPI, vol. 12(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jianhua & Zhao, Mingwei & Liu, Haikuan & Xu, Xiaoming, 2013. "Networked characteristics of the urban rail transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1538-1546.
    2. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    3. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Dong-Joon Kang & Su-Han Woo, 2017. "Liner shipping networks, port characteristics and the impact on port performance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 274-295, June.
    5. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    8. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    9. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    10. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    11. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    12. Ting Chen & Jianxiao Ma & Zhenjun Zhu & Xiucheng Guo, 2023. "Evaluation Method for Node Importance of Urban Rail Network Considering Traffic Characteristics," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    13. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    14. Aldrich, Preston R. & El-Zabet, Jermeen & Hassan, Seerat & Briguglio, Joseph & Aliaj, Enela & Radcliffe, Maria & Mirza, Taha & Comar, Timothy & Nadolski, Jeremy & Huebner, Cynthia D., 2015. "Monte Carlo tests of small-world architecture for coarse-grained networks of the United States railroad and highway transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 32-39.
    15. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Ghosh, Saptarshi & Banerjee, Avishek & Ganguly, Niloy, 2012. "Some insights on the recent spate of accidents in Indian Railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2917-2929.
    19. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:394-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.