IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v659y2025ics0378437125000068.html
   My bibliography  Save this article

Node importance corresponds to passenger demand in public transport networks

Author

Listed:
  • Šfiligoj, Tina
  • Peperko, Aljoša
  • Bajec, Patricija
  • Cats, Oded

Abstract

We investigate the correspondence between network-based public transport network (PTN) supply indicators and passenger demand at the node level, by systematically assessing correlations between node centrality measures and passenger boarding counts across different graph representations of PTNs. At the stop-level, undirected L- and P-space representations with three different edge weightings: unweighted, service-frequency-weighted, and in-vehicle-time-weighted are analysed. In each case, we calculate degree, closeness, betweenness and eigenvector centralities and examine the relation shapes. At the route level, we examine degree and eigenvector centrality for unweighted and weighted C-space representations. We introduce a modified C-space representation with self-loops, with service frequencies as self-loop weights, and propose eigenvector centrality as a route-level supply indicator. Stop- and route-level properties are integrated using the B-space representation. This methodology was applied to a case study for a bus PTN in Ljubljana, Slovenia. Results show strong correspondence between passenger demand and degree and eigenvector centrality scores in the frequency-weighted P-space (correlation ≈0.7−0.8). Notably, the relationship between eigenvector centrality and passenger counts in the new C-space representation with self-loops exhibits logarithmic behaviour. Furthermore, the results suggest a minimum eigenvector centrality threshold (≈10−3) for a route to start facilitating passenger use. The route-level results from the B-space analysis show exponential convergence of passenger counts to route eigenvector centrality. Results of the stop-level analysis are in line with previous research and deepen the understanding of centrality measures as supply indicators. Most significantly, the route-level analysis is novel, and the results open promising venues for further research.

Suggested Citation

  • Šfiligoj, Tina & Peperko, Aljoša & Bajec, Patricija & Cats, Oded, 2025. "Node importance corresponds to passenger demand in public transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
  • Handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437125000068
    DOI: 10.1016/j.physa.2025.130354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125000068
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. C. von Ferber & T. Holovatch & Yu. Holovatch & V. Palchykov, 2009. "Public transport networks: empirical analysis and modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(2), pages 261-275, March.
    3. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    4. Pu, Han & Li, Yinzhen & Ma, Changxi, 2022. "Topology analysis of Lanzhou public transport network based on double-layer complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    5. Sybil Derrible & Christopher Kennedy, 2011. "Applications of Graph Theory and Network Science to Transit Network Design," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 495-519.
    6. von Ferber, C. & Holovatch, T. & Holovatch, Yu. & Palchykov, V., 2007. "Network harness: Metropolis public transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 585-591.
    7. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    8. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    9. Wang, Li-Na & Wang, Kai & Shen, Jiang-Long, 2020. "Weighted complex networks in urban public transportation: Modeling and testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    11. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    12. Sarlas, Georgios & Páez, Antonio & Axhausen, Kay W., 2020. "Betweenness-accessibility: Estimating impacts of accessibility on networks," Journal of Transport Geography, Elsevier, vol. 84(C).
    13. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    14. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    15. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    16. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziyulong & Huang, Ketong & Massobrio, Renzo & Bombelli, Alessandro & Cats, Oded, 2024. "Quantification and comparison of hierarchy in Public Transport Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    2. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Shuaiming Chen & Ximing Ji & Haipeng Shao, 2024. "Revealing the Community Structure of Urban Bus Networks: a Multi-view Graph Learning Approach," Networks and Spatial Economics, Springer, vol. 24(3), pages 589-619, September.
    4. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    6. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    8. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    9. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    10. Cats, Oded & Hijner, Anne Mijntje, 2021. "Quantifying the cascading effects of passenger delays," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    12. Hu, Baoyu & Feng, Shumin & Li, Jinyang & Zhao, Hu, 2018. "Statistical analysis of passenger-crowding in bus transport network of Harbin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 426-438.
    13. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    14. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    15. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    16. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    17. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    19. Liu, Zhihang & Li, Wei & Yang, Yuxiang, 2025. "The robustness of metro networks with the rich-core structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    20. Peng Wu & Yunfei Li & Chengbing Li, 2022. "Invulnerability of the Urban Agglomeration Integrated Passenger Transport Network under Emergency Events," IJERPH, MDPI, vol. 20(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:659:y:2025:i:c:s0378437125000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.