IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v657y2025ics0378437124007398.html
   My bibliography  Save this article

The robustness of metro networks with the rich-core structure

Author

Listed:
  • Liu, Zhihang
  • Li, Wei
  • Yang, Yuxiang

Abstract

As a critical component of daily transportation, it is crucial to investigate how metro systems maintain stable operations in the face of various internal and external anomalies and attacks. Researching the robustness of metro networks with the rich-core structure can effectively reveal the vulnerabilities of critical nodes, thereby providing important insights for optimizing network design and enhancing transportation efficiency. In this work, we demonstrate several characteristics of metro networks: the degree distribution follows a power-law; the node betweenness is more continuous than the degree values; and the relation between the rich-club coefficient and the sequence of nodes ranked by betweenness follows an inverse proportional function. Based on these characteristics, we propose an algorithm to identify rich-core structures in metro networks, which includes the high-betweenness nodes we require. Since the edge weights are primarily concentrated between high-betweenness nodes, our algorithm is also applicable to weighted metro networks. We then investigate the robustness of six well-structured metro networks by simulating random and targeted attacks on the rich-core. The results indicate that, in the majority of metro networks (both weighted and unweighted), it is crucial to enhance protection against random attacks on the rich-core, as random attacks on this core can have effects comparable to targeted attacks. However, for a few networks with high edge weights in the rich-core, such as the Berlin metro network, the impact of targeted attacks far exceeds that of random attacks. In such cases, special attention must be given to protecting high-betweenness nodes to prevent rapid network collapse.

Suggested Citation

  • Liu, Zhihang & Li, Wei & Yang, Yuxiang, 2025. "The robustness of metro networks with the rich-core structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
  • Handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007398
    DOI: 10.1016/j.physa.2024.130230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124007398
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Wang, Xiangrong & Koç, Yakup & Derrible, Sybil & Ahmad, Sk Nasir & Pino, Willem J.A. & Kooij, Robert E., 2017. "Multi-criteria robustness analysis of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 19-31.
    3. Cinelli, Matteo & Ferraro, Giovanna & Iovanella, Antonio, 2018. "Rich-club ordering and the dyadic effect: Two interrelated phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 808-818.
    4. Wu, Xingtang & Dong, Hairong & Tse, Chi Kong & Ho, Ivan W.H. & Lau, Francis C.M., 2018. "Analysis of metro network performance from a complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 553-563.
    5. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    6. Matteo Cinelli & Giovanna Ferraro & Antonio Iovanella, 2017. "Resilience of Core-Periphery Networks in the Case of Rich-Club," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    7. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    8. Zhou, Yaoming & Wang, Junwei & Huang, George Q., 2019. "Efficiency and robustness of weighted air transport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 14-26.
    9. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    10. Athen Ma & Raúl J Mondragón, 2015. "Rich-Cores in Networks," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    11. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    12. Bellingeri, Michele & Cassi, Davide, 2018. "Robustness of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 47-55.
    13. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    15. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    16. Zhang, Haoran, 2020. "Metro and urban growth: Evidence from China," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Sybil Derrible, 2012. "Network Centrality of Metro Systems," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    18. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    19. Bellingeri, M. & Bevacqua, D. & Scotognella, F. & LU, Zhe-Ming & Cassi, D., 2018. "Efficacy of local attack strategies on the Beijing road complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 316-328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaolei & Lei, Zengxiang & Duan, Zhengyu, 2024. "Assessing metro network vulnerability with turn-back operations: A Monte Carlo method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    2. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    3. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    5. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    6. Xu, Chen & Xu, Xueguo, 2024. "A two-stage resilience promotion approach for urban rail transit networks based on topology enhancement and recovery optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    7. Cats, Oded & Krishnakumari, Panchamy, 2020. "Metropolitan rail network robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    9. Cats, Oded, 2017. "Topological evolution of a metropolitan rail transport network: The case of Stockholm," Journal of Transport Geography, Elsevier, vol. 62(C), pages 172-183.
    10. Yingying Xing & Jian Lu & Shengdi Chen & Sunanda Dissanayake, 2017. "Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai Metro," Public Transport, Springer, vol. 9(3), pages 501-525, October.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Zhao, Jiaqi & Liang, Qinghuai & Guo, Jiaao & Pu, Keqian, 2024. "Vulnerability assessment and evolution analysis of Beijing's Urban Rail Transit Network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    13. Jia, Tao & Liu, Wenxuan & Liu, Xintao, 2021. "A cross-city exploratory analysis of the robustness of bus transit networks using open-source data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    14. Zhang, Jianhua & Wang, Meng, 2019. "Transportation functionality vulnerability of urban rail transit networks based on movingblock: The case of Nanjing metro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Siddharth Patwardhan & Marc Barthelemy & Şirag Erkol & Santo Fortunato & Filippo Radicchi, 2024. "Symmetry breaking in optimal transport networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    17. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    18. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    19. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    20. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:657:y:2025:i:c:s0378437124007398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.