IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14503-d963721.html
   My bibliography  Save this article

Research on the Optimization Model of Railway Emergency Rescue Network Considering Space-Time Accessibility

Author

Listed:
  • Jing Zuo

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Mengxing Shang

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jianwu Dang

    (Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics & Image Processing, Lanzhou 730070, China)

Abstract

The capability of railway emergency rescue can be enhanced by maintaining the railway emergency rescue network and upgrading its technology. Nowadays, influenced by the factors, such as resource type, personnel distribution, line level, etc., space-time differences may be unavoidable. In the meantime, the general description method of the transportation network may lack the consideration of the rescue transportation particularity, so the strategies of resource allocation, maintenance, and upgrading could be illogical. Hence, in this paper, the gravity model is utilized to improve the classical travel time budget model and to construct the space-time accessibility model, firstly. Then, further exploring the space-time accessibility of nodes and edges of railway emergency rescue network and considering the randomness of travel time, a space-time accessibility measurement method for an emergency network is proposed. Moreover, a global optimization model with accessibility characteristics is then constructed for the maintenance allocation of the emergency rescue transportation network. The results show that the proposed method can solve the maintenance allocation problem of the large-scale rescue network effectively, reduce the risk of maintenance allocation strategy failure caused by unreasonable node index parameters, and provide an effective basis and theoretical support for the rational formulation of railway rescue transportation network maintenance allocation strategy.

Suggested Citation

  • Jing Zuo & Mengxing Shang & Jianwu Dang, 2022. "Research on the Optimization Model of Railway Emergency Rescue Network Considering Space-Time Accessibility," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14503-:d:963721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    4. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    5. Martín, Belén & Ortega, Emilio & de Isidro, Ágata & Iglesias-Merchan, Carlos, 2021. "Improvements in high-speed rail network environmental evaluation and planning: An assessment of accessibility gains and landscape connectivity costs in Spain," Land Use Policy, Elsevier, vol. 103(C).
    6. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Moustafa Moufid Kassem & Lee Vien Leong & Fadzli Mohamed Nazri, 2022. "An Integrated Framework for the Quantification of Road Network Seismic Vulnerability and Accessibility to Critical Services," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    8. Guomin Zhang & Lihua Song & Haitao Wang & Chao Hu & Na Wang, 2018. "Location-assistant content distribution scheme for emergency rescue," International Journal of Distributed Sensor Networks, , vol. 14(9), pages 15501477188, September.
    9. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    10. Baofeng Sun & Jiaojiao Liu & Junyi Hao & Xiuxiu Shen & Xinhua Mao & Xianmin Song, 2020. "Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    11. Li, Shengxiao (Alex) & Duan, Hongyu (Anna) & Smith, Tony E. & Hu, Haoyu, 2021. "Time-varying accessibility to senior centers by public transit in Philadelphia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 245-258.
    12. Mohamad Shatanawi & Ferenc Mészáros, 2022. "Implications of the Emergence of Autonomous Vehicles and Shared Autonomous Vehicles: A Budapest Perspective," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huizhu Wang & Jianqin Zhou, 2023. "Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    2. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    3. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    5. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    6. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    7. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    8. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    9. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    10. Peng Zang & Fei Xian & Hualong Qiu & Shifa Ma & Hongxu Guo & Mengrui Wang & Linchuan Yang, 2022. "Differences in the Correlation between the Built Environment and Walking, Moderate, and Vigorous Physical Activity among the Elderly in Low- and High-Income Areas," IJERPH, MDPI, vol. 19(3), pages 1-15, February.
    11. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    12. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.
    13. Xie, Fengjie & Ma, Mengdi & Ren, Cuiping, 2022. "Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    14. Mohri, Seyed Sina & Akbarzadeh, Meisam & Sayed Matin, Seyed Hamed, 2020. "A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    15. Chen, Zhiwei & Li, Xiaopeng, 2021. "Designing corridor systems with modular autonomous vehicles enabling station-wise docking: Discrete modeling method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Xu, Wangtu (Ato) & Long, Ying & Zhang, Wei, 2019. "Prioritizing future funding and construction of the planned high-speed rail corridors of China – According to regional structure and urban land development potential indices," Transport Policy, Elsevier, vol. 81(C), pages 381-395.
    17. Federico Cavallaro & Francesco Bruzzone & Silvio Nocera, 2023. "Effects of high-speed rail on regional accessibility," Transportation, Springer, vol. 50(5), pages 1685-1721, October.
    18. Asif Raza & Ming Zhong & Muhammad Safdar, 2022. "Evaluating Locational Preference of Urban Activities with the Time-Dependent Accessibility Using Integrated Spatial Economic Models," IJERPH, MDPI, vol. 19(14), pages 1-33, July.
    19. Aldona Jarašūnienė & Kristina Čižiūnienė, 2021. "Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    20. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14503-:d:963721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.