IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p9057-d437858.html
   My bibliography  Save this article

A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process

Author

Listed:
  • Tomas Macak

    (Department of Management, Faculty of Economics and Management, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

  • Jan Hron

    (Department of Management, Faculty of Economics and Management, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

  • Jaromir Stusek

    (Department of Management, Faculty of Economics and Management, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

Abstract

Controlling the life cycle of natural resources, from extraction within the design and the production of products to handling waste, is crucial to green growth and is a part of advancing a resource-efficient, circular economy where everything is fully utilised. One way of using resources more efficiently for a greener economy is to design a production process that takes cost and energy savings into account. From this point of view, the goal of the article is to create a causal description of sustainable woodworking—especially using renewable and non-renewable resources—in relation to changes in the concentration levels of CO 2 in the atmosphere. After estimating the partial parameters, this model can be used to predict or simulate different CO 2 concentration levels in the atmosphere—for example, based on the ratio of renewable to non-renewable sources. After a theoretical description, the subsequent practical goal is to identify the optimal settings of wood-milling process parameters for either minimising energy consumption per workpiece and unit variable costs or for maximising the overall customer benefit. For this purpose, a complete factorial design was used, and based on this, the consumption energy (direct cost) optimisation of the production process was supplemented by a profitable production calculation. The effect of reducing variability was verified using a statistical F-test. The impact of minimising energy consumption (economically expressed as the mean profit) was then validated using a Student’s t -test.

Suggested Citation

  • Tomas Macak & Jan Hron & Jaromir Stusek, 2020. "A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9057-:d:437858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/9057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/9057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marko Jausovec & Metka Sitar, 2019. "Comparative Evaluation Model Framework for Cost-Optimal Evaluation of Prefabricated Lightweight System Envelopes in the Early Design Phase," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    2. Daniel Toth & Mansoor Maitah & Kamil Maitah, 2019. "Development and Forecast of Employment in Forestry in the Czech Republic," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    3. Shofique U. Ahmed & Rajesh Arora, 2019. "Quality characteristics optimization in CNC end milling of A36 K02600 using Taguchi’s approach coupled with artificial neural network and genetic algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 676-695, August.
    4. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    5. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    6. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    7. Arash Moradzadeh & Omid Sadeghian & Kazem Pourhossein & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Improving Residential Load Disaggregation for Sustainable Development of Energy via Principal Component Analysis," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    8. Jinkai Li & Jingjing Ma & Wei Wei, 2020. "Analysis and Evaluation of the Regional Characteristics of Carbon Emission Efficiency for China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    9. Peter Haidl & Armin Buchroithner & Bernhard Schweighofer & Michael Bader & Hannes Wegleiter, 2019. "Lifetime Analysis of Energy Storage Systems for Sustainable Transportation," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    10. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    2. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    3. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    4. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    5. Chuanjia Du & Chengjun Wang & Tao Feng, 2023. "The Impact of China’s National Sustainable Development Experimental Zone Policy on Energy Transition," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    6. Alexandra von Meier & Elizabeth L. Ratnam & Kyle Brady & Keith Moffat & Jaimie Swartz, 2020. "Phasor-Based Control for Scalable Integration of Variable Energy Resources," Energies, MDPI, vol. 13(1), pages 1-14, January.
    7. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    8. Zhou, Xiaoxiao & Lin, Junjie & Wang, Lu & Huang, Hongyun & Zhao, Xin, 2022. "Wind power resources and China's sustainable development roadmap: Evidence from China," Resources Policy, Elsevier, vol. 79(C).
    9. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    10. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    11. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    12. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    13. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    14. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    15. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    16. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    17. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    18. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    19. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    20. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9057-:d:437858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.