IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2013-d161568.html
   My bibliography  Save this article

Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes

Author

Listed:
  • Shun Jia

    (Department of Finance and Economics, Shandong University of Science and Technology, Jinan 250031, China
    Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Qingwen Yuan

    (Department of Finance and Economics, Shandong University of Science and Technology, Jinan 250031, China)

  • Wei Cai

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Qinghe Yuan

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Conghu Liu

    (School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China)

  • Jingxiang Lv

    (Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China)

  • Zhongwei Zhang

    (Department of Mechanical Manufacturing and Automation, Henan University of Technology, Zhengzhou 450001, China)

Abstract

Drilling processes, as some of the most widely used machining processes in the manufacturing industry, play an important role in manufacturing process energy-saving programs. However, research focus on energy modeling of drilling processes, especially for the modeling of material-drilling power, are really scarce. To bridge this gap, an improved material-drilling power model is proposed in this paper. The obtained material-drilling power model can improve the accuracy of the material-drilling power and lay a good foundation for energy modeling and optimization of drilling processes. Finally, experimental studies were carried out on an XHK-714F CNC machining center (Hangzhou HangJi Machine Tool Co., Ltd., Hangzhou, China) and a JTVM6540 CNC milling machine (Jinan Third Machine Tool Co., Ltd., Jinan, China). The results showed that predictive accuracies with the proposed model are generally higher than 96% for all the test cases.

Suggested Citation

  • Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2013-:d:161568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    2. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    3. Rosario Domingo & Marta María Marín & Juan Claver & Roque Calvo, 2015. "Selection of Cutting Inserts in Dry Machining for Reducing Energy Consumption and CO 2 Emissions," Energies, MDPI, vol. 8(11), pages 1-15, November.
    4. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    5. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    6. Cai, Wei & Liu, Fei & Zhou, XiaoNa & Xie, Jun, 2016. "Fine energy consumption allowance of workpieces in the mechanical manufacturing industry," Energy, Elsevier, vol. 114(C), pages 623-633.
    7. Shun Jia & Qinghe Yuan & Dawei Ren & Jingxiang Lv, 2017. "Energy Demand Modeling Methodology of Key State Transitions of Turning Processes," Energies, MDPI, vol. 10(4), pages 1-19, April.
    8. Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    10. Tuo, Junbo & Liu, Fei & Liu, Peiji & Zhang, Hua & Cai, Wei, 2018. "Energy efficiency evaluation for machining systems through virtual part," Energy, Elsevier, vol. 159(C), pages 172-183.
    11. Liu, Peiji & Liu, Fei & Qiu, Hang, 2017. "A novel approach for acquiring the real-time energy efficiency of machine tools," Energy, Elsevier, vol. 121(C), pages 524-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Song & Jing Shi & Anda Pan & Jie Yang & Jun Xie, 2020. "A Dynamic Multi-Swarm Particle Swarm Optimizer for Multi-Objective Optimization of Machining Operations Considering Efficiency and Energy Consumption," Energies, MDPI, vol. 13(10), pages 1-18, May.
    2. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    3. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    2. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
    3. Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
    4. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    5. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    6. Shang, Zhendong & Gao, Dong & Jiang, Zhipeng & Lu, Yong, 2019. "Towards less energy intensive heavy-duty machine tools: Power consumption characteristics and energy-saving strategies," Energy, Elsevier, vol. 178(C), pages 263-276.
    7. Shun Jia & Shang Wang & Jingxiang Lv & Wei Cai & Na Zhang & Zhongwei Zhang & Shuowei Bai, 2021. "Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    8. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    9. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2018. "Application of the novel fractional grey model FAGMO(1,1,k) to predict China's nuclear energy consumption," Energy, Elsevier, vol. 165(PB), pages 223-234.
    10. Wen, Xuanhao & Cao, Huajun & Hon, Bernard & Chen, Erheng & Li, Hongcheng, 2021. "Energy value mapping: A novel lean method to integrate energy efficiency into production management," Energy, Elsevier, vol. 217(C).
    11. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    12. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    13. Minda Ma & Ran Yan & Weiguang Cai, 2018. "Energy savings evaluation in public building sector during the 10th–12th FYP periods of China: an extended LMDI model approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 429-441, May.
    14. Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Saha, Bidyut Baran, 2021. "The role of environmental taxes on technological innovation," Energy, Elsevier, vol. 232(C).
    15. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Wang, Jinling & Tian, Yebing & Hu, Xintao & Han, Jinguo & Liu, Bing, 2023. "Integrated assessment and optimization of dual environment and production drivers in grinding," Energy, Elsevier, vol. 272(C).
    17. Hu, Luoke & Peng, Chen & Evans, Steve & Peng, Tao & Liu, Ying & Tang, Renzhong & Tiwari, Ashutosh, 2017. "Minimising the machining energy consumption of a machine tool by sequencing the features of a part," Energy, Elsevier, vol. 121(C), pages 292-305.
    18. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    19. Xinghua Fan & Xuxia Li & Jiuli Yin, 2019. "Impact of environmental tax on green development: A nonlinear dynamical system analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-23, September.
    20. Tomas Macak & Jan Hron & Jaromir Stusek, 2020. "A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2013-:d:161568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.