IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7410-d411157.html
   My bibliography  Save this article

Analysis of Transportation Network Vulnerability and Resilience within an Urban Agglomeration: Case Study of the Greater Bay Area, China

Author

Listed:
  • Mingyu Chen

    (Institute of Transportation Engineering, Tsinghua University, Beijing 100084, China)

  • Huapu Lu

    (Institute of Transportation Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Recently, urban agglomerations have become the main platform of China’s economic development. As one of those, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) has an important strategic position in national blueprints. Its amazing achievement is inseparable from reliable and resilient transportation networks. With the aim of improving the sustainability of the GBA, this paper presents a novel view of vulnerability and resilience of integrated transportation networks within an urban agglomeration. According to complex network theory, the integrated transportation network model of the GBA was established. Various scenarios were considered to improve the overall level of defensive ability, including random failures, targeted attacks and natural hazards. Vulnerability and resilience assessment models were developed to investigate the influences on the whole network. Finally, a simulation analysis was conducted on the GBA to examine the variations in network performance when faced with different attack scenarios. The results indicate that the transportation network of the GBA is more vulnerable and has less resilience to targeted attacks, while natural hazards had little influence on the performance, to a certain extent. Moreover, the betweenness recovery strategy seemed to be the best choice for every attack scenario.

Suggested Citation

  • Mingyu Chen & Huapu Lu, 2020. "Analysis of Transportation Network Vulnerability and Resilience within an Urban Agglomeration: Case Study of the Greater Bay Area, China," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7410-:d:411157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    2. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    3. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    4. Yingying Xing & Jian Lu & Shengdi Chen & Sunanda Dissanayake, 2017. "Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai Metro," Public Transport, Springer, vol. 9(3), pages 501-525, October.
    5. Terje Aven, 2011. "On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 515-522, April.
    6. Bussiere, Matthieu & Mulder, Christian, 2000. "Political Instability and Economic Vulnerability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 5(4), pages 309-330, October.
    7. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    8. Wang, Jianwei & Rong, Lili & Zhang, Liang & Zhang, Zhongzhi, 2008. "Attack vulnerability of scale-free networks due to cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6671-6678.
    9. Jiangang Shi & Shiping Wen & Xianbo Zhao & Guangdong Wu, 2019. "Sustainable Development of Urban Rail Transit Networks: A Vulnerability Perspective," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    10. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    11. Wang, Hui & Huang, Jinyuan & Xu, Xiaomin & Xiao, Yanghua, 2014. "Damage attack on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 134-148.
    12. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    13. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    15. Hsieh, Cheng-Hsien & Feng, Cheng-Min, 2020. "The highway resilience and vulnerability in Taiwan," Transport Policy, Elsevier, vol. 87(C), pages 1-9.
    16. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    17. Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
    18. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    19. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Wu & Yunfei Li & Chengbing Li, 2022. "Invulnerability of the Urban Agglomeration Integrated Passenger Transport Network under Emergency Events," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    2. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    3. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    2. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    3. Jing Liu & Huapu Lu & Mingyu Chen & Jianyu Wang & Ying Zhang, 2020. "Macro Perspective Research on Transportation Safety: An Empirical Analysis of Network Characteristics and Vulnerability," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    4. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    5. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    6. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    7. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    8. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    9. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    10. Liu, Zhizhen & Chen, Hong & Liu, Enze & Hu, Wanyu, 2022. "Exploring the resilience assessment framework of urban road network for sustainable cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    11. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    12. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Jakšić, Zoran & Janić, Milan, 2020. "Modeling resilience of the ATC (Air Traffic Control) sectors," Journal of Air Transport Management, Elsevier, vol. 89(C).
    14. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    15. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    16. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    19. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    20. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7410-:d:411157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.