IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4591-d1657943.html
   My bibliography  Save this article

Resilience Assessment of Urban Bus–Metro Hybrid Networks in Flood Disasters: A Case Study of Zhengzhou, China

Author

Listed:
  • Tianliang Zhu

    (Urban Mobility Institute, College of Transportation, Tongji University, Shanghai 201804, China)

  • Hui Li

    (Urban Mobility Institute, College of Transportation, Tongji University, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

  • Yixuan Wu

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

  • Yuzhe Jiang

    (Urban Mobility Institute, College of Transportation, Tongji University, Shanghai 201804, China)

  • Jie Pan

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

  • Zhenhua Dai

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, College of Transportation, Tongji University, Shanghai 201804, China)

Abstract

Urban transportation systems, particularly integrated bus–metro networks, play a critical role in sustaining city functions but face significant vulnerability during extreme flood disasters. Taking Zhengzhou, China, as a case study, this study developed a comprehensive assessment model to evaluate the resilience of urban bus–metro hybrid networks under flood scenarios. First, a complex network-based bus–metro hybrid transportation network model was established, incorporating quantifiable flood disaster risk indices considering disaster-inducing factors, hazard-prone environments, and disaster-bearing entities. A cascading failure model was then constructed to simulate the propagation of node failures and passenger load redistribution during flood events. Subsequently, network resilience was evaluated using the topological metric of the relative size of the largest connected component and the functional metric of global efficiency. The analysis examined the influence of the load capacity sensitivity parameters α and β on resilience outcomes. Simulation results indicated that the parameter combination α = 0.8 and β = 2.0 yielded the highest resilience under the tested conditions, offering a balance between redundancy and the targeted protection of high-load nodes. Additionally, recovery strategies prioritizing nodes based on betweenness centrality significantly improved resilience outcomes. This study provides valuable insights and practical guidance for improving urban transportation resilience, assisting policymakers and planners in better mitigating flood disaster impacts.

Suggested Citation

  • Tianliang Zhu & Hui Li & Yixuan Wu & Yuzhe Jiang & Jie Pan & Zhenhua Dai, 2025. "Resilience Assessment of Urban Bus–Metro Hybrid Networks in Flood Disasters: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 17(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4591-:d:1657943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingyu Chen & Huapu Lu, 2020. "Analysis of Transportation Network Vulnerability and Resilience within an Urban Agglomeration: Case Study of the Greater Bay Area, China," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    2. Xu, Xiaohan & Huang, Ailing & Shalaby, Amer & Feng, Qian & Chen, Mingyang & Qi, Geqi, 2024. "Exploring cascading failure processes of interdependent multi-modal public transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    3. Dunn, Sarah & Wilkinson, Sean M., 2016. "Increasing the resilience of air traffic networks using a network graph theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 39-50.
    4. Hai-xiang Guo & Xin-yu He & Xin-biao Lv & Yang Wu, 2024. "Risk analysis of rainstorm-urban lifeline system disaster chain based on the PageRank-risk matrix and complex network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10583-10606, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    2. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    3. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Yuhao Wang & Jie Liu & Zhouyu Li, 2025. "The Resilience of an Urban Rail Transit Network: An Evaluation Approach Based on a Weighted Coupled Map Lattice Model," Mathematics, MDPI, vol. 13(4), pages 1-16, February.
    5. da Silva Filho, Flávio Lopes, 2022. "Aplicação do modelo de séries temporais para previsão do número de passageiros de uma companhia aérea," SocArXiv gmyaj, Center for Open Science.
    6. Wang, Jianwei & He, Rouye & Sun, Haozhe & He, Haofan, 2025. "Cascading dynamics on coupled networks with load-capacity interplay and concurrent recovery-failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 661(C).
    7. Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Peng Wu & Yunfei Li & Chengbing Li, 2022. "Invulnerability of the Urban Agglomeration Integrated Passenger Transport Network under Emergency Events," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    9. Xin Liu & Pingping Luo & Madhab Rijal & Maochuan Hu & Khai Lin Chong, 2024. "Spatial Spillover Effects of Urban Agglomeration on Road Network with Industrial Co-Agglomeration," Land, MDPI, vol. 13(12), pages 1-28, December.
    10. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    11. Ogawa, Akinobu & Tsuchiya, Takahiro, 2024. "China’s Smart Port Initiative in the Guangdong–Hong Kong–Macao Greater Bay Area," MPRA Paper 121687, University Library of Munich, Germany.
    12. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Xu, Xiangdong & Chen, Anthony & Xu, Guangming & Yang, Chao & Lam, William H.K., 2021. "Enhancing network resilience by adding redundancy to road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Liu, Zhongshan & Yu, Bin & Zhang, Li & Sun, Yuxuan, 2025. "Resilience enhancement of multi-modal public transportation system via electric bus network redesign," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    15. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    16. Roucolle, Chantal & Seregina, Tatiana & Urdanoz, Miguel, 2020. "Measuring the development of airline networks: Comprehensive indicators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 303-324.
    17. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Wang, Linyang & Li, Duowei & Kouvelas, Anastasios, 2021. "Recovery preparedness of global air transport influenced by COVID-19 pandemic: Policy intervention analysis," Transport Policy, Elsevier, vol. 106(C), pages 54-63.
    19. Jakšić, Zoran & Janić, Milan, 2020. "Modeling resilience of the ATC (Air Traffic Control) sectors," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. Zhu, Yipeng & Ng, Kam K.H., 2025. "Spatial temporal modelling of air traffic network evolution and resilience enhancement in response to the dynamic coupling of propagation outbreaks," Journal of Transport Geography, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4591-:d:1657943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.