IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7103-d406602.html
   My bibliography  Save this article

Performance-Based Building Design of High-Rise Residential Buildings in Indonesia

Author

Listed:
  • Sulfiah Dwi Astarini

    (Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia)

  • Christiono Utomo

    (Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia)

Abstract

The complexity of the design and completion of buildings poses a challenge for the construction industry in terms of meeting user needs. Performance-based building design (PBBD) is a design concept that describes these needs as performance requirements, designing buildings according to an iterative process of translating and evaluating the performance requirements of the buildings. PBBD is a concept that is used to produce buildings with high performance. This study aims to identify which PBBD factors are applied by architect and engineers in the planning and design of high-rise residential building in Surabaya, Indonesia. Primary data were collected by a survey using observation. A questionnaire was distributed to designers who were involved in design processes. A total of 68 respondents responded to the questionnaire. A descriptive analysis through a scatter plot was used to rank the application of PBBD. Factor analysis was used for the application of the PBBD concept. Four factors were identified: the interests of occupants, building management, process of design collaboration and risk of loss. Future research is needed to measure the success model of PBBD and to integrate PBBD into BIM (building information modeling) to allow interoperability.

Suggested Citation

  • Sulfiah Dwi Astarini & Christiono Utomo, 2020. "Performance-Based Building Design of High-Rise Residential Buildings in Indonesia," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7103-:d:406602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    2. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    3. Luís Bragança & Ricardo Mateus & Heli Koukkari, 2010. "Building Sustainability Assessment," Sustainability, MDPI, vol. 2(7), pages 1-14, July.
    4. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    5. Fabio Fantozzi & Caterina Gargari & Massimo Rovai & Giacomo Salvadori, 2019. "Energy Upgrading of Residential Building Stock: Use of Life Cycle Cost Analysis to Assess Interventions on Social Housing in Italy," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    6. Chieh-Hua Wen & Wei-Wei Lin, 2016. "Customer segmentation of freight forwarders and impacts on the competitive positioning of ocean carriers in the Taiwan--southern China trade lane," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(4), pages 420-435, May.
    7. GhaffarianHoseini, Ali & Zhang, Tongrui & Nwadigo, Okechukwu & GhaffarianHoseini, Amirhosein & Naismith, Nicola & Tookey, John & Raahemifar, Kaamran, 2017. "Application of nD BIM Integrated Knowledge-based Building Management System (BIM-IKBMS) for inspecting post-construction energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 935-949.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yufen Zhang & Hongfan Bu & Shengxi Cao & Xiongfei Zhao, 2021. "Performance-Based Design of a Main Exhibition Hall and Its Ecological Connectivity with Surroundings," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Hui-Ping Tserng & I-Cheng Cho & Chun-Hung Chen & Yu-Fan Liu, 2021. "Developing a Risk Management Process for Infrastructure Projects Using IDEF0," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    3. Sulfiah Dwi Astarini & Christiono Utomo & Ayu Fatimah Sari & M Arif Rohman & Nugroho Priyo Negoro, 2020. "The Influence of Performance-Based Building Design on the Strategy of Retail Property in Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    3. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    4. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.
    5. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    6. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    7. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    8. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    9. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    10. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    11. Ádám László Katona & Huang Xuan & Sara Elhadad & István Kistelegdi & István Háber, 2020. "High-Resolution CFD and In-Situ Monitoring Based Validation of an Industrial Passive Air Conduction System (PACS)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    12. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    13. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Wang, C. & Zhu, Y. & Qu, J. & Hu, H.D., 2018. "Automatic air temperature control in a container with an optic-variable wall," Applied Energy, Elsevier, vol. 224(C), pages 671-681.
    15. Hiroshi Mori & Tetsu Kubota & I Gusti Ngurah Antaryama & Sri Nastiti N. Ekasiwi, 2020. "Analysis of Window-Opening Patterns and Air Conditioning Usage of Urban Residences in Tropical Southeast Asia," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    16. Alberto Meiss & Miguel A. Padilla-Marcos & Jesús Feijó-Muñoz, 2017. "Methodology Applied to the Evaluation of Natural Ventilation in Residential Building Retrofits: A Case Study," Energies, MDPI, vol. 10(4), pages 1-19, April.
    17. Bin Qian & Tao Yu & Haiquan Bi & Bo Lei, 2019. "Measurements of Energy Consumption and Environment Quality of High-Speed Railway Stations in China," Energies, MDPI, vol. 13(1), pages 1-22, December.
    18. Chen, Jianli & Brager, Gail S. & Augenbroe, Godfried & Song, Xinyi, 2019. "Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US," Applied Energy, Elsevier, vol. 235(C), pages 673-684.
    19. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    20. Chen, Yujiao & Tong, Zheming & Wu, Wentao & Samuelson, Holly & Malkawi, Ali & Norford, Leslie, 2019. "Achieving natural ventilation potential in practice: Control schemes and levels of automation," Applied Energy, Elsevier, vol. 235(C), pages 1141-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7103-:d:406602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.