IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1452-d212371.html
   My bibliography  Save this article

Energy Upgrading of Residential Building Stock: Use of Life Cycle Cost Analysis to Assess Interventions on Social Housing in Italy

Author

Listed:
  • Fabio Fantozzi

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

  • Caterina Gargari

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

  • Massimo Rovai

    (Department of Civil and Industrial Engineering (DICI), University of Pisa, 56122 Pisa, Italy)

  • Giacomo Salvadori

    (Department of Energy, Systems, Territory and Constructions Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

Abstract

The debate on the relevance of the global sustainability (including energy, environmental, social, economic, and political aspects) of building stock is becoming increasingly important in Europe. In this context, special attention is placed on the refurbishment of existing buildings, in particular those characterized by significant volumes and poor energy performance. Directive 2012/27/EU introduced stringent constraints (often disregarded) for public administrations to ensure a minimum yearly renovation quota of its building stock. This study describes how Life Cycle Cost analysis (LCC) can be used as a tool to identify the “cost-optimal level” among different design solutions to improve the energy performance of existing buildings. With this aim, a social housing building located in the town of Pisa (Italy) was chosen as the case study, for which two alternative renovation designs were compared using the LCC methodology to identify the optimal solution. The two alternatives were characterized by the same energy performance—one was based on the demolition of the existing building and the construction of a new building (with a wooden frame structure, as proposed by the public company owner of the building), while the other was based on the renovation of the existing building. This study can provide useful information, especially for designers and public authorities, about the relevance of the economic issues related to the renovation of social housing in a Mediterranean climate.

Suggested Citation

  • Fabio Fantozzi & Caterina Gargari & Massimo Rovai & Giacomo Salvadori, 2019. "Energy Upgrading of Residential Building Stock: Use of Life Cycle Cost Analysis to Assess Interventions on Social Housing in Italy," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1452-:d:212371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    2. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
    4. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    5. Roberta Moschetti & Helge Brattebø, 2017. "Combining Life Cycle Environmental and Economic Assessments in Building Energy Renovation Projects," Energies, MDPI, vol. 10(11), pages 1-17, November.
    6. Carla Balocco & Alessandro Colaianni, 2018. "Assessment of Energy Sustainable Operations on a Historical Building. The Dante Alighieri High School in Florence," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    2. Bamisaye Mayowa & Thanwadee Chinda, 2023. "Environmental Assessment of Demolition Tools Used in Townhouse Demolition: System Dynamics Modeling," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    3. Georgia Spyrou & Byron Ioannou & Manolis Souliotis & Andreas L. Savvides & Paris A. Fokaides, 2023. "The Adaptability of Cities to Climate Change: Evidence from Cities’ Redesign towards Mitigating the UHI Effect," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    4. Marcelle Engler Bridi & Joao Soliman-Junior & Ariovaldo Denis Granja & Patricia Tzortzopoulos & Vanessa Gomes & Doris Catharine Cornelie Knatz Kowaltowski, 2022. "Living Labs in Social Housing Upgrades: Process, Challenges and Recommendations," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    5. Giovanni Santi & Angelo Bertolazzi & Emanuele Leporelli & Umberto Turrini & Giorgio Croatto, 2020. "Green Systems Integrated to the Building Envelope: Strategies and Technical Solution for the Italian Case," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    6. Manzan Marco & Atlas Ramezani & Alex Buoite Stella & Amedeo Pezzi, 2023. "Climate Change and Building Renovation: Effects on Energy Consumption and Internal Comfort in a Social Housing Building in Northern Italy," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    7. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    8. Xiaoyue Zhu & Bo Gao & Xudong Yang & Zhong Yu & Ji Ni, 2021. "Modifying Building Energy-Saving Design Based on Field Research into Climate Features and Local Residents’ Habits," Energies, MDPI, vol. 14(2), pages 1-19, January.
    9. Oriol Pons-Valladares & Jelena Nikolic, 2020. "Sustainable Design, Construction, Refurbishment and Restoration of Architecture: A Review," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    10. Rita Remeikienė & Ligita Gasparėnienė & Aleksandra Fedajev & Marek Szarucki & Marija Đekić & Jolita Razumienė, 2021. "Evaluation of Sustainable Energy Development Progress in EU Member States in the Context of Building Renovation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    11. Sulfiah Dwi Astarini & Christiono Utomo, 2020. "Performance-Based Building Design of High-Rise Residential Buildings in Indonesia," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    12. Enrico Sicignano & Giacomo Di Ruocco & Anna Stabile, 2019. "Quali—A Quantitative Environmental Assessment Method According to Italian CAM, for the Sustainable Design of Urban Neighbourhoods in Mediterranean Climatic Regions," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    13. Tomáš Mandičák & Peter Mésároš & Marcela Spišáková, 2021. "Impact of Information and Communication Technology on Sustainable Supply Chain and Cost Reducing of Waste Management in Slovak Construction," Sustainability, MDPI, vol. 13(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    2. Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
    3. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    4. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    5. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    6. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    7. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    8. Carla Balocco & Lorenzo Leoncini, 2020. "Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    9. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    10. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
    11. Alaa Khadra & Mårten Hugosson & Jan Akander & Jonn Are Myhren, 2020. "Development of a Weight Factor Method for Sustainability Decisions in Building Renovation. Case Study Using Renobuild," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    12. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    13. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    14. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    15. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    16. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.
    17. Elena Fregonara & Diego Giuseppe Ferrando, 2023. "The Discount Rate in the Evaluation of Project Economic-Environmental Sustainability," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    18. Vegard Heide & Håkon Selstad Thingbø & Anne Gunnarshaug Lien & Laurent Georges, 2022. "Economic and Energy Performance of Heating and Ventilation Systems in Deep Retrofitted Norwegian Detached Houses," Energies, MDPI, vol. 15(19), pages 1-29, September.
    19. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    20. Sara Verones, 2017. "Retrofitting the existing building stock through a development rights market stimulation tool: An assessment of a recent experience in Northern Italy," Urban Studies, Urban Studies Journal Limited, vol. 54(8), pages 1905-1920, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1452-:d:212371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.