IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8737-d432424.html
   My bibliography  Save this article

Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era

Author

Listed:
  • Carla Balocco

    (Department of Industrial Engineering, University of Florence, via Santa Marta 3, 50139 Firenze, Italy)

  • Lorenzo Leoncini

    (Department of Industrial Engineering, University of Florence, via Santa Marta 3, 50139 Firenze, Italy)

Abstract

The COVID-19 pandemic has changed the engineering/technical approach to building and plant design. In Italy, most of the school heritage belongs to historical buildings, which are not only under constraints for the protection and prevention of loss of cultural heritage but are often created with a different intended use. This fact implies that any plant engineering project is really complex. Starting from the current sanitary measures for reopening during the Covid-19 era and the crucial current research on this matter, the feasibility of plant retrofit/refurbishment solutions by means of effective ventilation and air quality are investigated. Various plant solutions based on demand-controlled mechanical ventilation, operating 24 h a day, seven days a week, without air recirculation mode, for a historical high school building were studied using transient simulations. A result comparison showed that it is possible to obtain healthy school environments by means of an optimal compromise between energy savings and the best ventilation conditions for indoor air quality (IAQ). Sustainability is understood as effective and efficient solutions for energy consumption reduction and environmental sustainability as a guarantee for people’s safety and wellbeing.

Suggested Citation

  • Carla Balocco & Lorenzo Leoncini, 2020. "Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8737-:d:432424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Ángel Campano & Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Juan José Sendra, 2019. "Thermal Perception in Mild Climate: Adaptive Thermal Models for Schools," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    2. Zhen Peng & Wu Deng & Rosangela Tenorio, 2017. "Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
    3. Carla Balocco & Alessandro Colaianni, 2018. "Modelling of Reversible Plant System Operations in a Cultural Heritage School Building for Indoor Thermal Comfort," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    4. Gil-Baez, Maite & Barrios-Padura, Ángela & Molina-Huelva, Marta & Chacartegui, R., 2017. "Natural ventilation systems in 21st-century for near zero energy school buildings," Energy, Elsevier, vol. 137(C), pages 1186-1200.
    5. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Maella Minaksi González & Teresa Cuerdo-Vilches, 2020. "Overheating in Schools: Factors Determining Children’s Perceptions of Overall Comfort Indoors," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    6. Jakub Bartyzel & Damian Zięba & Jarosław Nęcki & Mirosław Zimnoch, 2020. "Assessment of Ventilation Efficiency in School Classrooms Based on Indoor–Outdoor Particulate Matter and Carbon Dioxide Measurements," Sustainability, MDPI, vol. 12(14), pages 1-9, July.
    7. Carla Balocco & Alessandro Colaianni, 2018. "Assessment of Energy Sustainable Operations on a Historical Building. The Dante Alighieri High School in Florence," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    8. Jae-Sol Choi & Jae-Hyuk Lee & Eui-Jong Kim, 2018. "Effects of ERV Filter Degradation on Indoor CO 2 Levels of a Classroom," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2023. "New ventilation design criteria for energy sustainability and indoor air quality in a post Covid-19 scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Chih-Pei Hu & Jen-Hsiung Cheng, 2022. "Challenges and Actions of IAQ under COVID-19: A Survey of Taiwanese People’s Perception of Epidemic Prevention and Indoor Places Certification," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    3. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    4. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Alonso & Jesús Llanos & Rocío Escandón & Juan J. Sendra, 2021. "Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    2. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    3. Armando Pelliccioni & Paolo Monti & Giorgio Cattani & Fabio Boccuni & Marco Cacciani & Silvia Canepari & Pasquale Capone & Maria Catrambone & Mariacarmela Cusano & Maria Concetta D’Ovidio & Antonella , 2020. "Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    4. Carla Balocco & Alessandro Colaianni, 2018. "Modelling of Reversible Plant System Operations in a Cultural Heritage School Building for Indoor Thermal Comfort," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    5. Mahsa Tashakor & Reza Dahmardeh Behrooz & Seyed Reza Asvad & Dimitris G. Kaskaoutis, 2022. "Tracing of Heavy Metals Embedded in Indoor Dust Particles from the Industrial City of Asaluyeh, South of Iran," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    6. Guillermo Efren Ovando-Chacon & Sandy Luz Ovando-Chacon & Abelardo Rodríguez-León & Mario Díaz-González, 2023. "Numerical Study of Indoor Air Quality in a University Professor’s Office," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    7. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    8. Katarzyna Ratajczak & Małgorzata Basińska, 2021. "The Well-Being of Children in Nurseries Does Not Have to Be Expensive: The Real Costs of Maintaining Low Carbon Dioxide Concentrations in Nurseries," Energies, MDPI, vol. 14(8), pages 1-19, April.
    9. Pavla Mocová & Jitka Mohelníková, 2021. "Indoor Climate Performance in a Renovated School Building," Energies, MDPI, vol. 14(10), pages 1-15, May.
    10. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    11. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    12. Lexuan Zhong & Jing Yuan & Brian Fleck, 2019. "Indoor Environmental Quality Evaluation of Lecture Classrooms in an Institutional Building in a Cold Climate," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    13. Vicente López-Chao & Vicente López-Pena, 2021. "Purpose Adequacy as a Basis for Sustainable Building Design: A Post-Occupancy Evaluation of Higher Education Classrooms," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    14. Chen, Jianli & Brager, Gail S. & Augenbroe, Godfried & Song, Xinyi, 2019. "Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US," Applied Energy, Elsevier, vol. 235(C), pages 673-684.
    15. Fusheng Ma & Changhong Zhan & Xiaoyang Xu, 2019. "Investigation and Evaluation of Winter Indoor Air Quality of Primary Schools in Severe Cold Weather Areas of China," Energies, MDPI, vol. 12(9), pages 1-19, April.
    16. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    17. Katarzyna Gładyszewska-Fiedoruk & Maria Jolanta Sulewska, 2020. "Thermal Comfort Evaluation Using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs)," Energies, MDPI, vol. 13(3), pages 1-15, January.
    18. Atienza-Márquez, Antonio & Domínguez Muñoz, Fernando & Fernández Hernández, Francisco & Cejudo López, José Manuel, 2022. "Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution," Energy, Elsevier, vol. 261(PB).
    19. Gaetano Settimo & Luciana Indinnimeo & Marco Inglessis & Marco De Felice & Roberta Morlino & Annalisa di Coste & Alessandra Fratianni & Pasquale Avino, 2020. "Indoor Air Quality Levels in Schools: Role of Student Activities and No Activities," IJERPH, MDPI, vol. 17(18), pages 1-17, September.
    20. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8737-:d:432424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.