IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2827-d554703.html
   My bibliography  Save this article

Indoor Climate Performance in a Renovated School Building

Author

Listed:
  • Pavla Mocová

    (Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic)

  • Jitka Mohelníková

    (Faculty of Civil Engineering, Brno University of Technology, Veveri 331/95, 602 00 Brno, Czech Republic)

Abstract

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO 2 . It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.

Suggested Citation

  • Pavla Mocová & Jitka Mohelníková, 2021. "Indoor Climate Performance in a Renovated School Building," Energies, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2827-:d:554703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montazami, Azadeh & Gaterell, Mark & Nicol, Fergus, 2015. "A comprehensive review of environmental design in UK schools: History, conflicts and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 249-264.
    2. Katarzyna Gładyszewska-Fiedoruk & Vasyl Zhelykh & Andrii Pushchinskyi, 2019. "RETRACTED: Simulation and Analysis of Various Ventilation Systems Given in an Example in the Same School of Indoor Air Quality," Energies, MDPI, vol. 12(15), pages 1, July.
    3. Gil-Baez, Maite & Barrios-Padura, Ángela & Molina-Huelva, Marta & Chacartegui, R., 2017. "Natural ventilation systems in 21st-century for near zero energy school buildings," Energy, Elsevier, vol. 137(C), pages 1186-1200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    2. Carla Balocco & Lorenzo Leoncini, 2020. "Energy Cost for Effective Ventilation and Air Quality for Healthy Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    3. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    4. Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
    5. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    6. Lexuan Zhong & Jing Yuan & Brian Fleck, 2019. "Indoor Environmental Quality Evaluation of Lecture Classrooms in an Institutional Building in a Cold Climate," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    7. Chen, Jianli & Brager, Gail S. & Augenbroe, Godfried & Song, Xinyi, 2019. "Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US," Applied Energy, Elsevier, vol. 235(C), pages 673-684.
    8. Catarina Ribeiro & Nuno M. M. Ramos & Inês Flores-Colen, 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    9. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    10. Atienza-Márquez, Antonio & Domínguez Muñoz, Fernando & Fernández Hernández, Francisco & Cejudo López, José Manuel, 2022. "Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution," Energy, Elsevier, vol. 261(PB).
    11. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pawling, Rachel & García Kerdan, Iván & Greig, Alistair & Bucknall, Richard, 2018. "Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit," Energy, Elsevier, vol. 159(C), pages 1046-1059.
    12. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones," Applied Energy, Elsevier, vol. 279(C).
    13. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    14. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2020. "The contribution of ventilation on the energy performance of small residential buildings in the Mediterranean region," Energy, Elsevier, vol. 191(C).
    15. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Ioanna Moraiti & Anestis Fotoglou & Katerina Dona & Alexandra Katsimperi & Konstantinos Tsionakas & Athanasios Drigas, 2022. "IoT in Special Education," Technium Social Sciences Journal, Technium Science, vol. 30(1), pages 55-63, April.
    17. Heidari, Sahar & Poshtiri, Amin Haghighi & Gilvaei, Zoleikha Moghtader, 2024. "Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels," Energy, Elsevier, vol. 289(C).
    18. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    19. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    20. Qibo Liu & Yimeng Zhang & Wendong Ma & Juan Ren, 2023. "Application of an Architect-Friendly Digital Design Approach to the Wind Environment of Campus Dormitory Buildings," Sustainability, MDPI, vol. 15(12), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2827-:d:554703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.