IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4615-d367710.html
   My bibliography  Save this article

Green Systems Integrated to the Building Envelope: Strategies and Technical Solution for the Italian Case

Author

Listed:
  • Giovanni Santi

    (Department of Energy, Systems, Territory, and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

  • Angelo Bertolazzi

    (Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy)

  • Emanuele Leporelli

    (Department of Energy, Systems, Territory, and Constructions Engineering, University of Pisa, 56122 Pisa, Italy)

  • Umberto Turrini

    (Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy)

  • Giorgio Croatto

    (Department of Civil, Environmental and Architectural Engineering, University of Padua, 35131 Padua, Italy)

Abstract

Green roofs and green and living walls are increasingly seen in cities, because they are an important strategy that addresses some key urban environmental issues and allows the achievement of different benefits. Among these, the most relevant ones are reduction of the “Urban Heat Island” effect, of rainfall contributions to the sewer system, of environmental impact and energy saving, and retention of harmful substance. The study aims to analyze different systems of greenery systems integrated (GSI), green roofs (GR), and green and living walls (GW-LW), as a possible retrofit technique of the envelope of heritage buildings and especially their applications in the context of historic cities in Italy, pointing out positive and negative aspects. Particularly, it pays attention to the green retrofitting of buildings and to the technical problems related to the installation of systems, since at the moment there are already several studies that show the environmental and microclimatic benefits of the integration of vegetation in architecture. This study tries to highlight the series of design procedures necessary both in the preliminary phase and then in the executive phase to relate the GSI to the existing building envelopes. The GR, from the results of the simulations conducted, demonstrate a greater simplicity in their construction, with improvements also from the point of view of the working loads on the existing structures, since the interventions are performed more easily than those on the facade. The study highlights the architectural needs that are not always considered such as the increase in the thickness of the roof and the related need to raise its edges, changing the perspective of the building. On the other hand, the GW and the LW show some complexity in their construction because they must deal with facades often rich in decorative elements and where openings affect the assemblage and connection works such as the tinsmiths of the intrados of the openings. It must be taken into consideration the necessity of having to drill masonry, often inhomogeneous, to connect fixings and the problems of stability this entails must be carefully analyzed.

Suggested Citation

  • Giovanni Santi & Angelo Bertolazzi & Emanuele Leporelli & Umberto Turrini & Giorgio Croatto, 2020. "Green Systems Integrated to the Building Envelope: Strategies and Technical Solution for the Italian Case," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4615-:d:367710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc A. Rosen, 2013. "Engineering and Sustainability: Attitudes and Actions," Sustainability, MDPI, vol. 5(1), pages 1-15, January.
    2. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    3. Fabio Fantozzi & Caterina Gargari & Massimo Rovai & Giacomo Salvadori, 2019. "Energy Upgrading of Residential Building Stock: Use of Life Cycle Cost Analysis to Assess Interventions on Social Housing in Italy," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Pichlhöfer & Azra Korjenic & Abdulah Sulejmanovski & Erich Streit, 2023. "Influence of Facade Greening with Ivy on Thermal Performance of Masonry Walls," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Leo Capari & Harald Wilfing & Andreas Exner & Thomas Höflehner & Daniela Haluza, 2022. "Cooling the City? A Scientometric Study on Urban Green and Blue Infrastructure and Climate Change-Induced Public Health Effects," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    2. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    3. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    4. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
    5. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    6. Rosario Domingo & Marta María Marín & Juan Claver & Roque Calvo, 2015. "Selection of Cutting Inserts in Dry Machining for Reducing Energy Consumption and CO 2 Emissions," Energies, MDPI, vol. 8(11), pages 1-15, November.
    7. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    8. Edoardo De Cristo & Luca Evangelisti & Leone Barbaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2025. "A Systematic Review of Green Roofs’ Thermal and Energy Performance in the Mediterranean Region," Energies, MDPI, vol. 18(10), pages 1-38, May.
    9. Mohamed Abubakr & Adel T. Abbas & Italo Tomaz & Mahmoud S. Soliman & Monis Luqman & Hussien Hegab, 2020. "Sustainable and Smart Manufacturing: An Integrated Approach," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    10. Siwei Chen & Zhonghua Gou, 2022. "An Investigation of Green Roof Spatial Distribution and Incentive Policies Using Green Buildings as a Benchmark," Land, MDPI, vol. 11(11), pages 1-23, November.
    11. Elena Giacomello & Jacopo Gaspari, 2021. "Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    12. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2021. "Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates," Energies, MDPI, vol. 14(21), pages 1-14, October.
    13. Weiwei Xiong & Juan Li & Hankun Wang & Yongbo Wu & Dongchang Li & Jianhui Xue, 2023. "Biochar Addition and the Runoff Quality of Newly Constructed Green Roofs: A Field Study," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    14. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Chien-Chiao Chao & Kuo-An Hung & Szu-Yuan Chen & Feng-Yi Lin & Tzu-Ping Lin, 2021. "Application of a High-Density Temperature Measurement System for the Management of the Kaohsiung House Project," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    16. Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    17. Sungchul Kim & Dongsik Jang & Sunghae Jun & Sangsung Park, 2015. "A Novel Forecasting Methodology for Sustainable Management of Defense Technology," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    18. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    19. Perry C. Y. Liu & Huai-Wei Lo & James J. H. Liou, 2020. "A Combination of DEMATEL and BWM-Based ANP Methods for Exploring the Green Building Rating System in Taiwan," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    20. Sulfiah Dwi Astarini & Christiono Utomo, 2020. "Performance-Based Building Design of High-Rise Residential Buildings in Indonesia," Sustainability, MDPI, vol. 12(17), pages 1-17, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4615-:d:367710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.