IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p359-d304388.html
   My bibliography  Save this article

The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate

Author

Listed:
  • Mario Maiolo

    (Department of Environment Engineering and the Territory and Chemical Engineering, University of Calabria, 87036 Rende, Italy)

  • Behrouz Pirouz

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Roberto Bruno

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Stefania Anna Palermo

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

  • Natale Arcuri

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Patrizia Piro

    (Department of Civil Engineering, University of Calabria, 87036 Rende, Italy)

Abstract

Buildings portion in global energy consumption is 40%, and in the building envelope, the roof is a crucial point for improving indoor temperature, especially in the last and second last floors. Studies show that green roofs can be applied to moderate roof temperature and affect the indoor temperature in summer and winter. However, the performance of green roofs depends on several parameters such as climate, irrigation, layer materials, and thickness. In this context, the present research deals with a comprehensive experimental analysis of different thermal impacts of green roofs in summer and winter in a Mediterranean climate. Measurements carried out in one year in three different types of green roofs with different thicknesses, layers, and with and without the insulation layer. The analysis determined the possible period that indoor cooling or heating might be required with and without green roofs and demonstrated the positive impact of green roofs in moderating the roof temperature and temperature fluctuations, which in summer was remarkable. In conclusion, since in the Mediterranean climate, the thermal differences between green roofs and conventional roofs in summer are much higher than winter, it seems that the green roof without an insulation layer would show better performance.

Suggested Citation

  • Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:359-:d:304388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
    2. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    3. Spala, A. & Bagiorgas, H.S. & Assimakopoulos, M.N. & Kalavrouziotis, J. & Matthopoulos, D. & Mihalakakou, G., 2008. "On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece," Renewable Energy, Elsevier, vol. 33(1), pages 173-177.
    4. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    5. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chien-Chiao Chao & Kuo-An Hung & Szu-Yuan Chen & Feng-Yi Lin & Tzu-Ping Lin, 2021. "Application of a High-Density Temperature Measurement System for the Management of the Kaohsiung House Project," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    2. Weiwei Xiong & Juan Li & Hankun Wang & Yongbo Wu & Dongchang Li & Jianhui Xue, 2023. "Biochar Addition and the Runoff Quality of Newly Constructed Green Roofs: A Field Study," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    3. Elena Cantatore & Fabio Fatiguso, 2021. "An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    4. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    5. Edson R. Marciotto & Marcos Vinicius Bueno de Morais, 2021. "Energetics of Urban Canopies: A Meteorological Perspective," J, MDPI, vol. 4(4), pages 1-19, October.
    6. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2021. "Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates," Energies, MDPI, vol. 14(21), pages 1-14, October.
    7. María J. Ruá & Ángel M. Pitarch & Inés Arín & Lucía Reig, 2024. "A Roof Refurbishment Strategy to Improve the Sustainability of Building Stock: A Case Study," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    8. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Giovanni Santi & Angelo Bertolazzi & Emanuele Leporelli & Umberto Turrini & Giorgio Croatto, 2020. "Green Systems Integrated to the Building Envelope: Strategies and Technical Solution for the Italian Case," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    11. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    12. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    13. Sina Shaffiee Haghshenas & Behrouz Pirouz & Sami Shaffiee Haghshenas & Behzad Pirouz & Patrizia Piro & Kyoung-Sae Na & Seo-Eun Cho & Zong Woo Geem, 2020. "Prioritizing and Analyzing the Role of Climate and Urban Parameters in the Confirmed Cases of COVID-19 Based on Artificial Intelligence Applications," IJERPH, MDPI, vol. 17(10), pages 1-21, May.
    14. Behrouz Pirouz & Stefania Anna Palermo & Mario Maiolo & Natale Arcuri & Patrizia Piro, 2020. "Decreasing Water Footprint of Electricity and Heat by Extensive Green Roofs: Case of Southern Italy," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    15. Bin Chang & Yuexi Dang & Xilian Luo & Chuck Wah Yu & Zhaolin Gu, 2020. "Sustainability of Evaporative Cooling System for Environment Control for Preservation of Unearthed Historical Sites within Archaeological Museums in China," Sustainability, MDPI, vol. 12(23), pages 1-16, November.
    16. Siwei Chen & Zhonghua Gou, 2022. "An Investigation of Green Roof Spatial Distribution and Incentive Policies Using Green Buildings as a Benchmark," Land, MDPI, vol. 11(11), pages 1-23, November.
    17. Perry C. Y. Liu & Huai-Wei Lo & James J. H. Liou, 2020. "A Combination of DEMATEL and BWM-Based ANP Methods for Exploring the Green Building Rating System in Taiwan," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    18. Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    19. Dimitris Al. Katsaprakakis & Georgios Zidianakis & Yiannis Yiannakoudakis & Evaggelos Manioudakis & Irini Dakanali & Spyros Kanouras, 2020. "Working on Buildings’ Energy Performance Upgrade in Mediterranean Climate," Energies, MDPI, vol. 13(9), pages 1-28, May.
    20. Elena Giacomello & Jacopo Gaspari, 2021. "Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    21. Jiansheng Wu & Si Li & Nan Shen & Yuhao Zhao & Hongyi Cui, 2020. "Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    22. Behrouz Pirouz & Sina Shaffiee Haghshenas & Behzad Pirouz & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development," IJERPH, MDPI, vol. 17(8), pages 1-17, April.
    23. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    24. Behrouz Pirouz & Natale Arcuri & Behzad Pirouz & Stefania Anna Palermo & Michele Turco & Mario Maiolo, 2020. "Development of an Assessment Method for Evaluation of Sustainable Factories," Sustainability, MDPI, vol. 12(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    2. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    4. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    5. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    6. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    7. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    8. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    9. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    10. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    11. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    12. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    13. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    14. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    15. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    16. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    17. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    18. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    19. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    20. Zamora, Ramon & Srivastava, Anurag K., 2010. "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2009-2018, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:359-:d:304388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.