IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8111-d422578.html
   My bibliography  Save this article

Contribution of Roof Refurbishment to Urban Sustainability

Author

Listed:
  • Ángel Pitarch

    (Department of Mechanical Engineering and Construction, Jaume I University, CP12071 Castellón, Spain)

  • María José Ruá

    (Department of Mechanical Engineering and Construction, Jaume I University, CP12071 Castellón, Spain)

  • Lucía Reig

    (Department of Mechanical Engineering and Construction, Jaume I University, CP12071 Castellón, Spain)

  • Inés Arín

    (Department of Mechanical Engineering and Construction, Jaume I University, CP12071 Castellón, Spain)

Abstract

Achieving sustainable urban environments is a challenging goal—especially in existing cities with high percentages of old and obsolete buildings. This work analyzes the contribution of roof refurbishment to sustainability, considering that most roofs are currently underused. Many potential benefits of refurbishment can be achieved, such as the improvement of the energy performance of the buildings and the use of a wasted space for increasing green areas or for social purposes. In order to estimate the degree of the improvement, a vulnerable area in Castellón (east Spain) was selected as a case study. A thorough analysis of the residential building stock was undertaken. Using georeferenced information from the Cadastral Office we classified them according to typology, year of construction and roof type. Some refurbishment solutions were proposed and their applicability to the actual buildings was analyzed under different criteria. The theoretical benefits obtained in the neighborhood such as energy and carbon emissions savings were evaluated, together with the increase of green areas. Moreover, other social uses were suggested for neglected urban spaces in the area. Finally, a more accurate analysis was performed combining different solutions in a specific building, according to its particular characteristics.

Suggested Citation

  • Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8111-:d:422578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    2. Semple, Sally & Jenkins, David, 2020. "Variation of energy performance certificate assessments in the European Union," Energy Policy, Elsevier, vol. 137(C).
    3. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    4. Sri Yuliani & Gagoek Hardiman & Erni Setyowati, 2020. "Green-Roof: The Role of Community in the Substitution of Green-Space toward Sustainable Development," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    5. Yujiro Hirano & Tomohiko Ihara & Kei Gomi & Tsuyoshi Fujita, 2019. "Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    6. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    7. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    8. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    9. Abdulsalam S. Alghamdi, 2019. "Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah," Energies, MDPI, vol. 12(23), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar Mercader-Moyano & Antonio Serrano-Jiménez, 2021. "Special Issue “Urban and Buildings Regeneration Strategy to Climatic Change Mitigation, Energy, and Social Poverty after a World Health and Economic Global Crisis”," Sustainability, MDPI, vol. 13(21), pages 1-6, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    4. Behrouz Pirouz & Natale Arcuri & Behzad Pirouz & Stefania Anna Palermo & Michele Turco & Mario Maiolo, 2020. "Development of an Assessment Method for Evaluation of Sustainable Factories," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    5. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    6. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    8. Behrouz Pirouz & Stefania Anna Palermo & Mario Maiolo & Natale Arcuri & Patrizia Piro, 2020. "Decreasing Water Footprint of Electricity and Heat by Extensive Green Roofs: Case of Southern Italy," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    9. Marvuglia, Antonino & Koppelaar, Rembrandt & Rugani, Benedetto, 2020. "The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities," Ecological Modelling, Elsevier, vol. 438(C).
    10. Natalia Sergeevna Shushunova & Elena Anatolyevna Korol & Nikolai Ivanovich Vatin, 2021. "Modular Green Roofs for the Sustainability of the Built Environment: The Installation Process," Sustainability, MDPI, vol. 13(24), pages 1-11, December.
    11. Elena Giacomello & Jacopo Gaspari, 2021. "Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    12. Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    13. Sri Yuliani & Gagoek Hardiman & Erni Setyowati, 2020. "Green-Roof: The Role of Community in the Substitution of Green-Space toward Sustainable Development," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    14. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    15. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    16. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    17. Domenico Palladino & Flavio Scrucca & Nicolandrea Calabrese & Grazia Barberio & Carlo Ingrao, 2021. "Durum-Wheat Straw Bales for Thermal Insulation of Buildings: Findings from a Comparative Energy Analysis of a Set of Wall-Composition Samples on the Building Scale," Energies, MDPI, vol. 14(17), pages 1-19, September.
    18. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "A critical review on cellulose: From fundamental to an approach on sensor technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 402-412.
    19. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    20. Behrouz Pirouz & Sina Shaffiee Haghshenas & Behzad Pirouz & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development," IJERPH, MDPI, vol. 17(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8111-:d:422578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.