IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v438y2020ics0304380020304178.html
   My bibliography  Save this article

The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities

Author

Listed:
  • Marvuglia, Antonino
  • Koppelaar, Rembrandt
  • Rugani, Benedetto

Abstract

Embedding nature-based solutions (NBS) in cities is expected to bring quantifiable benefits, including resilience to flooding, drought, and heatwaves, and air quality improvement. Among NBS, green roofs have an important role in temperature regulation in buildings and in lowering the damaging effects of heatwaves on human health. In this paper a spatial microsimulation model is implemented to simulate temperature impacts of green roofs installations in cities and their capacity to attenuate the effects of heatwave episodes. Particularly vulnerable to heatwaves are elderly people with limited mobility, who have limited means to seek cooling and create cooler indoor environments. The model, implemented using the Netlogo platform (version 6.0.4), considers as agents the elderly citizens in a city area and simulates the heatwave-related health impacts, which are measured in mortality likelihood. In particular, the model simulates a generalised 1.5 °C to 3 °C indoor temperature reduction range induced by green roofs (based on inferences from green roof literature) in four different European cities: Szeged (Hungary), Alcalá de Henares (Spain), Metropolitan City of Milan (Italy) and Çankaya municipality (Turkey). The simulation utilises a ceteris paribus modelling approach, meaning that the relationships of the observed phenomenon (mortality induced by heatwaves) with other possible influencing factors (e.g. level of sport and physical activities practiced by people) are not taken into account. In the case of Szeged, Alcalá de Henares, and Çankaya municipality a substantial reduction in mortality is found to occur associated with green roofs roll out. In the case of the Metropolitan city of Milan, green roofs installations show a low mitigation effect in some scenarios. The underlying factor is the temperature threshold parameter of the model, above which heatwave mortality occurs. This parameter was inferred from the literature (Baccini M., et al., 2008) and it resulted to be substantially higher in the Metropolitan city of Milan (31.8 °C) than in the other cities. The simulation helps in obtaining results which are specific to a given city and particular scenarios therein, and provides additional insights, such as expected temperature mitigation effect induced by green roofs under climate change conditions, or the indoor temperature reduction targets that are needed for a particular city to have a maximum desired heatwave mitigation impact. However, the model parameters have to be carefully selected, after an accurate study of the domain literature.

Suggested Citation

  • Marvuglia, Antonino & Koppelaar, Rembrandt & Rugani, Benedetto, 2020. "The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities," Ecological Modelling, Elsevier, vol. 438(C).
  • Handle: RePEc:eee:ecomod:v:438:y:2020:i:c:s0304380020304178
    DOI: 10.1016/j.ecolmodel.2020.109351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    2. Vargo, Jason & Stone, Brian & Habeeb, Dana & Liu, Peng & Russell, Armistead, 2016. "The social and spatial distribution of temperature-related health impacts from urban heat island reduction policies," Environmental Science & Policy, Elsevier, vol. 66(C), pages 366-374.
    3. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    4. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    5. Peter Roebeling & Miguel Saraiva & Anna Palla & Ilaria Gnecco & Carla Teotónio & Teresa Fidelis & Filomena Martins & Henrique Alves & João Rocha, 2017. "Assessing the socio-economic impacts of green/blue space, urban residential and road infrastructure projects in the Confluence (Lyon): a hedonic pricing simulation approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(3), pages 482-499, March.
    6. Venu Kandiah & Andrew R. Binder & Emily Z. Berglund, 2017. "An Empirical Agent‐Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 2005-2022, October.
    7. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    8. Coma, Julià & Pérez, Gabriel & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2016. "Thermal assessment of extensive green roofs as passive tool for energy savings in buildings," Renewable Energy, Elsevier, vol. 85(C), pages 1106-1115.
    9. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    10. Bonnie L. Keeler & Perrine Hamel & Timon McPhearson & Maike H. Hamann & Marie L. Donahue & Kelly A. Meza Prado & Katie K. Arkema & Gregory N. Bratman & Kate A. Brauman & Jacques C. Finlay & Anne D. Gu, 2019. "Social-ecological and technological factors moderate the value of urban nature," Nature Sustainability, Nature, vol. 2(1), pages 29-38, January.
    11. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    12. Heesup Han & Sunghyup S. Hyun, 2019. "Green indoor and outdoor environment as nature‐based solution and its role in increasing customer/employee mental health, well‐being, and loyalty," Business Strategy and the Environment, Wiley Blackwell, vol. 28(4), pages 629-641, May.
    13. Bierens, Herman J. & Swanson, Norman R., 2000. "The econometric consequences of the ceteris paribus condition in economic theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 223-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dianna M. Smith & Alison Heppenstall & Monique Campbell, 2021. "Estimating Health over Space and Time: A Review of Spatial Microsimulation Applied to Public Health," J, MDPI, vol. 4(2), pages 1-11, June.
    2. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    3. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    4. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    5. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.
    8. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    9. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    10. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    11. Venter, Zander S. & Barton, David N. & Martinez-Izquierdo, Laura & Langemeyer, Johannes & Baró, Francesc & McPhearson, Timon, 2021. "Interactive spatial planning of urban green infrastructure – Retrofitting green roofs where ecosystem services are most needed in Oslo," Ecosystem Services, Elsevier, vol. 50(C).
    12. Rafael Suárez & Rocío Escandón & Ramón López-Pérez & Ángel Luis León-Rodríguez & Tillmann Klein & Sacha Silvester, 2018. "Impact of Climate Change: Environmental Assessment of Passive Solutions in a Single-Family Home in Southern Spain," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    13. Dimitris Perivoliotis & Iasonas Arvanitis & Anna Tzavali & Vassilios Papakostas & Sophia Kappou & George Andreakos & Angeliki Fotiadi & John A. Paravantis & Manolis Souliotis & Giouli Mihalakakou, 2023. "Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    14. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    15. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    17. Joonrak Kim & Dongmin Son & Bongju Jeong, 2017. "Two-Stage Integer Programing Model for Building Retrofit Planning for Energy Saving in South Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    18. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    19. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    20. Liu, Min (Max), 2014. "Probabilistic prediction of green roof energy performance under parameter uncertainty," Energy, Elsevier, vol. 77(C), pages 667-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:438:y:2020:i:c:s0304380020304178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.