IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2807-d1057147.html
   My bibliography  Save this article

Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus

Author

Listed:
  • Sinem Yıldırım

    (Department of Landscape Architecture, Near East University, Nicosia 99010, Cyprus)

  • Çimen Özburak

    (Department of Architecture, Near East University, Nicosia 99010, Cyprus)

  • Özge Özden

    (Department of Landscape Architecture, Near East University, Nicosia 99010, Cyprus)

Abstract

Anthropogenic activities and climate change have a profound impact on the urban environment. Therefore, energy conservation is an important subject for city planners. Green roofs can provide building insulation and mitigate against the urban heat island effect. This research was conducted in Cyprus, comparing different types of green roof vegetation against a control roof with no vegetation and their concomitant effects on indoor temperatures. The research project was performed at Near East University Campus for duration of twelve months. The experiment consisted of three different green roof types, and each hut with green roof had 3.5 m 2 roof areas with a soil depth of 8 cm. In addition, one control green roof system was established without insulation, without soil, and without vegetation. In order to measure the indoor temperatures of the huts, Elitech RC-5 temperature data loggers were used. The research results showed that green roof huts provided lower mean temperatures than the control hut during the summer period. Most importantly, huts with shrub plants had the lowest temperatures during hot summer conditions. Our results indicated that green roofs perform an important role in terms of building insulation and its subsequent energy use.

Suggested Citation

  • Sinem Yıldırım & Çimen Özburak & Özge Özden, 2023. "Green Roofs, Vegetation Types, Impact on the Thermal Effectiveness: An Experimental Study in Cyprus," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2807-:d:1057147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kubi Ackerman & Michael Conard & Patricia Culligan & Richard Plunz & Maria-Paola Sutto & Leigh Whittinghill, 2014. "Sustainable Food Systems for Future Cities: The Potential of Urban Agriculture," The Economic and Social Review, Economic and Social Studies, vol. 45(2), pages 189-206.
    2. Tang, Mingfang & Zheng, Xing, 2019. "Experimental study of the thermal performance of an extensive green roof on sunny summer days," Applied Energy, Elsevier, vol. 242(C), pages 1010-1021.
    3. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    4. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    5. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    6. Hsing-Fu Kuo & Ko-Wan Tsou, 2015. "Application of Environmental Change Efficiency to the Sustainability of Urban Development at the Neighborhood Level," Sustainability, MDPI, vol. 7(8), pages 1-20, August.
    7. Fernando Barriuso & Beatriz Urbano, 2021. "Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwei Chen & Zhonghua Gou, 2022. "An Investigation of Green Roof Spatial Distribution and Incentive Policies Using Green Buildings as a Benchmark," Land, MDPI, vol. 11(11), pages 1-23, November.
    2. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    5. Behrouz Pirouz & Natale Arcuri & Behzad Pirouz & Stefania Anna Palermo & Michele Turco & Mario Maiolo, 2020. "Development of an Assessment Method for Evaluation of Sustainable Factories," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    6. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    7. Behrouz Pirouz & Stefania Anna Palermo & Mario Maiolo & Natale Arcuri & Patrizia Piro, 2020. "Decreasing Water Footprint of Electricity and Heat by Extensive Green Roofs: Case of Southern Italy," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    8. Renata Rapisarda & Francesco Nocera & Vincenzo Costanzo & Gaetano Sciuto & Rosa Caponetto, 2022. "Hydroponic Green Roof Systems as an Alternative to Traditional Pond and Green Roofs: A Literature Review," Energies, MDPI, vol. 15(6), pages 1-27, March.
    9. Shahin Keynoush & Ehsan Daneshyar, 2022. "Defining a Pedagogical Framework for Integrating Buildings and Landscapes in Conjunction with Social Sustainability Discourse in the Architecture Graduate Design Studio," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    10. Bin Li & Weihong Guo & Xiao Liu & Yuqing Zhang & Peter John Russell & Marc Aurel Schnabel, 2021. "Sustainable Passive Design for Building Performance of Healthy Built Environment in the Lingnan Area," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    11. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    12. Hsing-Fu Kuo & Ko-Wan Tsou, 2017. "Modeling and Simulation of the Future Impacts of Urban Land Use Change on the Natural Environment by SLEUTH and Cluster Analysis," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    13. Sojung Kim & Burchan Aydin & Sumin Kim, 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study," Energies, MDPI, vol. 14(17), pages 1-13, September.
    14. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    15. Behrouz Pirouz & Sina Shaffiee Haghshenas & Behzad Pirouz & Sami Shaffiee Haghshenas & Patrizia Piro, 2020. "Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development," IJERPH, MDPI, vol. 17(8), pages 1-17, April.
    16. Jahrl, Ingrid & Moschitz, Heidrun & Cavin, Joëlle Salomon, 2021. "The role of food gardening in addressing urban sustainability – A new framework for analysing policy approaches," Land Use Policy, Elsevier, vol. 108(C).
    17. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Grazia Napoli & Rossella Corrao & Gianluca Scaccianoce & Simona Barbaro & Laura Cirrincione, 2022. "Public and Private Economic Feasibility of Green Areas as a Passive Energy Measure: A Case Study in the Mediterranean City of Trapani in Southern Italy," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    19. Ana M. Bartolome & Deiyalí A. Carpio & Beatriz Urbano, 2022. "Urban Agriculture Digital Planning for the European Union’s Green Deal," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(59), pages 159-159.
    20. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2807-:d:1057147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.